-
砷是煤中普遍存在、毒性较强且易挥发的痕量元素之一,在煤燃烧过程中,砷可随烟气被释放进入环境导致污染,是重要的人为大气砷排放源[1-4]。烟气中的砷除一部分以气态形式存在,大部分可在灰尘等颗粒物中富集[5-10]。无论是气态还是颗粒态砷最终均进入环境并发生迁移转化[11-12],对人体构成健康风险[13-17]。
将烟气砷污染控制技术按实施位置分为燃烧前、燃烧中和燃烧后三类控制技术[18]。燃烧前控制技术的关键是采用物理或化学前处理方法减少煤中的砷含量。煤中砷酸盐和有机砷较少,黄铁矿形态砷居多[19]。连续化学浸提法分析表明,砷以硫化物结合态为主,其次为有机物结合态,其它形态砷含量与煤种相关[20]。燃烧中砷污染控制技术的核心是通过混煤燃烧、添加化学药剂将挥发性强的气态砷转化为不易挥发的砷酸盐等,然后与粉煤灰发生凝并或被吸附而被除尘器捕集[21-22],以达到炉膛出口烟气砷含量降低的目标。燃烧后脱除主要针对末端烟气中的砷,通过吸附剂对其进行物理、化学吸附,实现气态砷在吸附剂表面的固化和稳定化,从而减少烟气中的气态砷含量。
本文综述了近年来烟气砷污染控制领域的主要研究进展,按燃烧前、燃烧中和燃烧后三类控制技术展开论述[18],对比分析了不同控制技术的原理、效果和优缺点。
燃煤烟气砷污染控制技术研究进展
Review on arsenic pollution control technologies in coal-fired flue gas
-
摘要: 砷是煤中常见的痕量有毒元素,燃煤电厂现有污染控制设备虽可脱除烟气中部分砷化合物,但由于燃煤量巨大,由燃煤排放的总砷量仍是最主要的人为大气砷排放源。为了有效控制燃煤过程砷的污染排放,特别是烟气砷的排放,国内外学者进行了大量研究。本文综述了近年来燃煤烟气砷污染控制技术的相关研究进展,分为燃烧前、燃烧中与燃烧后进行论述。燃烧前控制技术主要对煤进行物理与化学等预处理实现砷脱除;燃烧中通过混煤燃烧与加入添加剂方式使细颗粒物中的砷向粗颗粒物转化,并与飞灰、底灰一同脱除;燃烧后利用吸附剂将砷化合物固化从而被污染控制设备捕集。相比之下,燃烧后控制技术研究最为广泛。各项技术虽可取得较好的砷脱除效果,但实际应用和作用机理还需进一步探索。Abstract: Arsenic is one of the common hazardous trace elements in coal. Although the emitted arsenic can be partly removed by the existing air pollution control devices in coal-fired power plants, the total amount of arsenic emitted by coal burning is huge and coal combustion is still regarded as the most important anthropogenic emission source of atmospheric arsenic. In order to effectively control arsenic emission from coal burning process, especially from flue gas, many studies about arsenic capture and control in flue gas had been carried out. This review summarized the related studies about arsenic pollution control in coal-fired flue gas in recent years, and the techniques were divided into pre-combustion removal techniques, during combustion removal techniques and post-combustion removal techniques. The pre-combustion control techniques are mainly conducted via physical and chemical pretreatment to remove arsenic. The during combustion removal techniques can agglomerate fine particles into coarse particles for easy removal of arsenic by coal blending and chemical additives adding technique. The post-combustion removal techniques capture and immobilize arsenic by adsorbents, and then the captured arsenic will be removed by air pollution control devices. The post-combustion control techniques are the most widely studied strategy among them. Although these technologies achieve considerable arsenic removal efficiency, the further investigations about practical applications and mechanisms are still required in the future.
-
Key words:
- arsenic /
- flue gas /
- coal combustion /
- control
-
表 1 不同国家和地区煤砷含量
Table 1. The average contents of arsenic in coal from different countries and areas
表 2 不同煤种砷的含量
Table 2. The average contents of arsenic in different ranks of coal
表 3 煤洗选砷脱除效果
Table 3. The arsenic removal efficiency of coal washing
表 4 APCDs的砷脱除效果总结
Table 4. Summary of performance of APCDs for arsenic removal from flue gas
表 5 钙基吸附剂的砷脱除效果总结
Table 5. Summary of performance of calcium-based sorbents for arsenic removal from flue gas
吸附剂
Sorbent模拟烟气
Simulated flue gas温度/℃
Temp.吸附时间/min
Time吸附容量/(mg·g−1)
Absorption capacity文献
Ref.CaSiO3 N2/O2 1200 10 4.98 [87] CaSiO3 N2/O2/NO/SO2 1200 10 3.50 [87] CaO N2/O2/H2O 750 5 3.75 [88] CaO N2/O2/H2O/SO2 750 5 8.69 [88] CaO N2/O2 800 30 11.82 [91] CaO N2/O2/SO2 800 30 11.51 [91] CaO N2/O2/NO/SO2 1000 10 1.65 [90] CaO N2/O2/NO/SO2 1300 10 1.94 [90] CaSO4 N2/O2 1000 10 3.79 [90] 表 6 烟气组分和温度对铁基吸附剂的砷脱除效果
Table 6. The arsenic removal efficiencies of iron-based adsorbents in different gas components and reaction temperatures
表 7 不同烟气组分和温度下铝基吸附剂的砷脱除效果
Table 7. The arsenic removal efficiencies of aluminum-based adsorbents in different gas components and reaction temperatures
吸附剂
Sorbent模拟烟气
Simulated flue gas温度/℃
Temp吸附时间/min
Time吸附容量/(mg·g−1)
Absorption capacity文献
Ref.γ-Al2O3 N2/O2/H2O 300 60 66.62 [99] γ-Al2O3 N2/O2/H2O 400 60 52.30 [99] γ-Al2O3 N2/O2/H2O/SO2 300 60 56.92 [99] γ-Al2O3 N2/O2/H2O/SO2 400 60 46.49 [99] γ-Al2O3 N2/O2/H2O 750 90 9.27 [98] γ-Al2O3 N2/O2/H2O/HCl/SO2 750 90 8.44 [98] γ-Al2O3 N2 400 60 0.99 [100] γ-Al2O3 N2 600 60 1.48 [100] γ-Al2O3 N2/O2 400 60 1.55 [100] γ-Al2O3 N2/O2 600 60 2.17 [100] 表 8 不同烟气组分和温度下复合吸附剂的砷脱除效果
Table 8. The arsenic removal efficiencies of aluminum-based adsorbents in different gas components and reaction temperatures
吸附剂
Sorbent模拟烟气
Simulated flue gas温度/℃
Temp.吸附时间/min
Time吸附容量/(mg·g−1)
Absorption capacity文献
Ref.Pd/α-Al2O3 N2/H2/CO/CO2/H2S 204 150 4.74 [101] Pd/γ-Al2O3 N2/H2/CO2 200 300 70.00 [102] FMBO N2/O2/CO2/H2O/NO/SO2 300 30 17.98 [104] FMBO N2/O2/CO2/H2O/NO/SO2 600 30 21.65 [104] FMBO N2/O2/CO2/H2O/NO/SO2 700 30 8.22 [104] Mn(Ⅳ)/ATP N2/O2/CO2/H2O/NO/SO2 600 30 6.66 [105] Mn(Ⅳ)/ATP N2/O2/CO2/H2O/NO/SO2 600 60 10.98 [105] Mn(Ⅳ)/ATP N2/O2/CO2/H2O/NO/SO2 600 180 25.01 [105] -
[1] 施正伦, 骆仲泱, 周劲松, 等. 石煤流化床燃烧重金属排放特性试验研究 [J]. 煤炭学报, 2001, 26(2): 209-212. doi: 10.3321/j.issn:0253-9993.2001.02.024 SHI Z L, LUO Z Y, ZHOU J S, et al. Experimental research on heavy metals emission from fluidized bed with stone coal fired [J]. Journal of China Coal Society, 2001, 26(2): 209-212(in Chinese). doi: 10.3321/j.issn:0253-9993.2001.02.024
[2] 刘海彪, 孔少飞, 王伟, 等. 中国民用煤燃烧排放细颗粒物中重金属的清单 [J]. 环境科学, 2016, 37(8): 2823-2835. doi: 10.13227/j.hjkx.2016.08.002 LIU H B, KONG S F, WANG W, et al. Emission inventory of heavy metals in fine particles emitted from residential coal burning in China [J]. Environmental Science, 2016, 37(8): 2823-2835(in Chinese). doi: 10.13227/j.hjkx.2016.08.002
[3] JI P, SONG G C, XU W T, et al. Transformation characteristics of arsenic and lead during coal combustion [J]. Energy & Fuels, 2019, 33(9): 9280-9288. [4] LUO G Q, YU Q, MA J J, et al. Pilot-scale study of volatilization behavior of Hg, Se, As, Cl, S during decoupled conversion of coal [J]. Fuel, 2013, 112: 704-709. doi: 10.1016/j.fuel.2013.05.029 [5] WANG J W, ZHANG Y S, LIU Z, et al. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions [J]. Energy & Fuels, 2017, 31(7): 7309-7316. [6] HE K Q, SHI M D, LI Y, et al. Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1310-1317. doi: 10.1016/S1872-5813(20)30087-6 [7] YANG Y H, HU H Y, XIE K, et al. Insight of arsenic transformation behavior during high-arsenic coal combustion [J]. Proceedings of the Combustion Institute, 2019, 37(4): 4443-4450. doi: 10.1016/j.proci.2018.07.064 [8] KANG Y, LIU G J, CHOU C L, et al. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects [J]. Science of the Total Environment, 2011, 412/413: 1-13. doi: 10.1016/j.scitotenv.2011.10.026 [9] GUO X, ZHENG C G, XU M H. Characterization of arsenic emissions from a coal-fired power plant [J]. Energy & Fuels, 2004, 18(6): 1822-1826. [10] 金毅, 苑春刚, 江万平, 等. 粉煤灰中砷溶出特性及其与铁锰相关性分析 [J]. 环境化学, 2013, 32(2): 267-274. doi: 10.7524/j.issn.0254-6108.2013.02.013 JIN Y, YUAN C G, JIANG W P, et al. Arsenic leaching characteristics and correlations with iron, manganese in fly ash from coal-fired power plants [J]. Environmental Chemistry, 2013, 32(2): 267-274(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.02.013
[11] 何剑汶, 李文旭, 谌书, 等. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比 [J]. 环境化学, 2019, 38(8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304 HE J W, LI W X, CHEN S, et al. Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province [J]. Environmental Chemistry, 2019, 38(8): 1801-1810(in Chinese). doi: 10.7524/j.issn.0254-6108.2018102304
[12] XIE J J, YUAN C G, XIE J, et al. Fraction distribution of arsenic in different-sized atmospheric particulate matters [J]. Environmental Science and Pollution Research, 2019, 26(30): 30826-30835. doi: 10.1007/s11356-019-06176-w [13] FINKELMAN R B, OREM W, CASTRANOVA V, et al. Health impacts of coal and coal use: Possible solutions [J]. International Journal of Coal Geology, 2002, 50(1/2/3/4): 425-443. [14] BAILEY K A, WU M C, WARD W O, et al. Arsenic and the epigenome: Interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation [J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(2): 106-115. doi: 10.1002/jbt.21462 [15] ZHAO Y C, ZHANG J Y, HUANG W C, et al. Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China [J]. Energy Conversion and Management, 2008, 49(4): 615-624. doi: 10.1016/j.enconman.2007.07.044 [16] 陈保卫, CHRIS L X. 中国关于砷的研究进展 [J]. 环境化学, 2011, 30(11): 1936-1943. CHEN B W, CHRIS L. Recent progress in arsenic research in China [J]. Environmental Chemistry, 2011, 30(11): 1936-1943(in Chinese).
[17] 刘新蕾, 欧阳婉约, 张彤. 大气颗粒物重金属组分的化学形态及健康效应 [J]. 环境化学, 2021, 40(4): 974-989. doi: 10.7524/j.issn.0254-6108.2019111801 LIU X L, OUYANG W Y, ZHANG T. Chemical speciation and health effect of heavy metals in atmospheric particulate matter [J]. Environmental Chemistry, 2021, 40(4): 974-989(in Chinese). doi: 10.7524/j.issn.0254-6108.2019111801
[18] WANG Y, YU J L, WANG Z H, et al. A review on arsenic removal from coal combustion: Advances, challenges and opportunities [J]. Chemical Engineering Journal, 2021, 414: 128785. doi: 10.1016/j.cej.2021.128785 [19] WANG C B, LIU H M, ZHANG Y, et al. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies [J]. Progress in Energy and Combustion Science, 2018, 68: 1-28. doi: 10.1016/j.pecs.2018.04.001 [20] 郭欣, 郑楚光, 刘迎晖, 等. 煤中汞, 砷, 硒赋存形态的研究 [J]. 工程热物理学报, 2001, 22(6): 763-766. doi: 10.3321/j.issn:0253-231X.2001.06.030 GUO X, ZHENG C G, LIU Y H, et al. The study on the mode of occurrence of mercury, arsenic and selenium in coal [J]. Journal of Engineering Thermophysics, 2001, 22(6): 763-766(in Chinese). doi: 10.3321/j.issn:0253-231X.2001.06.030
[21] GONG H Y, HUANG Y D, HU H Y, et al. Insight of particulate arsenic removal from coal-fired power plants [J]. Fuel, 2019, 257: 116018. doi: 10.1016/j.fuel.2019.116018 [22] TIAN C, GUPTA R, ZHAO Y C, et al. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature [J]. Energy & Fuels, 2016, 30(8): 6201-6209. [23] KIZILSHTEIN L Y, KHOLODKOV Y I. Ecologically hazardous elements in coals of the Donets Basin [J]. International Journal of Coal Geology, 1999, 40(2/3): 189-197. [24] MASTALERZ M, DROBNIAK A. Arsenic, cadmium, lead, and zinc in the Danville and Springfield coal members (Pennsylvanian) from Indiana [J]. International Journal of Coal Geology, 2007, 71(1): 37-53. doi: 10.1016/j.coal.2006.05.005 [25] DING Z H, ZHENG B S, LONG J P, et al. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China [J]. Applied Geochemistry, 2001, 16(11/12): 1353-1360. [26] MUKHERJEE S, SRIVASTAVA S K. Trace elements in high-sulfur Assam coals from the makum coalfield in the northeastern region of India [J]. Energy & Fuels, 2005, 19(3): 882-891. [27] 中国电力行业年度发展报告2020 [R]. 北京: 中国电力企业联合会, 2020. China electric power industry annual development report 2020 [R]. Beijing: China Electricity Council, 2020.
[28] GEORGE A, SHEN B X, KANG D R, et al. Emission control strategies of hazardous trace elements from coal-fired power plants in China [J]. Journal of Environmental Sciences, 2020, 93: 66-90. doi: 10.1016/j.jes.2020.02.025 [29] 2020煤炭行业发展年度报告 [R]. 北京: 中国煤炭工业协会, 2021. 2020 Annual report on the development of the coal industry [R]. Beijing: China Coal Industry Association, 2021.
[30] SWAINE D J, GOODARZI F. Environmental aspects of trace elements in coal [M]. Dordrecht Kluwer, 1995. [31] YUDOVICH Y E, KETRIS M P. Arsenic in coal: a review [J]. International Journal of Coal Geology, 2005, 61(3/4): 141-196. [32] KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals [J]. International Journal of Coal Geology, 2009, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002 [33] TIAN H Z, LU L, HAO J M, et al. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts [J]. Energy & Fuels, 2013, 27(2): 601-614. [34] 刘忠, 白宝泉, 王硕. 燃煤烟气中As、Se、Pb的形态分布及S、Cl元素对其形态分布的影响 [J]. 燃料化学学报, 2020, 48(11): 1298-1309. doi: 10.3969/j.issn.0253-2409.2020.11.003 LIU Z, BAI B Q, WANG S. Species distribution of As, Se and Pb in coal-fired flue gas and influence of elements S and Cl on them [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1298-1309(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.11.003
[35] 刘慧敏, 王春波, 张月, 等. 温度和赋存形态对燃煤过程中砷迁移和释放的影响 [J]. 化工学报, 2015, 66(11): 4643-4651. LIU H M, WANG C B, ZHANG Y, et al. Effect of temperature and occurrence form of arsenic on its migration and volatilization during coal combustion [J]. CIESC Journal, 2015, 66(11): 4643-4651(in Chinese).
[36] MARCZAK M, WIEROŃSKA F, BURMISTRZ P, et al. Investigation of subbituminous coal and lignite combustion processes in terms of mercury and arsenic removal [J]. Fuel, 2019, 251: 572-579. doi: 10.1016/j.fuel.2019.04.082 [37] ZHENG C H, WANG L, ZHANG Y X, et al. Co-benefit of hazardous trace elements capture in dust removal devices of ultra-low emission coal-fired power plants [J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(1): 68-79. doi: 10.1631/jzus.A1700229 [38] TIAN H Z, LIU K Y, ZHOU J R, et al. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants: Temporal trends and spatial variation characteristics [J]. Environmental Science & Technology, 2014, 48(6): 3575-3582. [39] 王明仕, 杨娜娜, 朱建明, 等. 中国燃煤砷排放量估算 [J]. 煤炭转化, 2008, 31(2): 1-3,7. doi: 10.3969/j.issn.1004-4248.2008.02.001 WANG M S, YANG N N, ZHU J M, et al. Estimation of arsenic emission from coal combustion in China [J]. Coal Conversion, 2008, 31(2): 1-3,7(in Chinese). doi: 10.3969/j.issn.1004-4248.2008.02.001
[40] CHEN J, LIU G J, KANG Y, et al. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China [J]. Chemosphere, 2013, 90(6): 1925-1932. doi: 10.1016/j.chemosphere.2012.10.032 [41] DUAN J C, TAN J H, HAO J M, et al. Size distribution, characteristics and sources of heavy metals in haze episod in Beijing [J]. Journal of Environmental Sciences, 2014, 26(1): 189-196. doi: 10.1016/S1001-0742(13)60397-6 [42] LI J H, PENG Y, CHANG H Z, et al. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources [J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413-427. [43] PENG Y, SI W Z, LI X, et al. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study [J]. Applied Catalysis B:Environmental, 2016, 181: 692-698. doi: 10.1016/j.apcatb.2015.08.030 [44] 陈清如, 杨玉芬. 21世纪高效干法选煤技术的发展 [J]. 中国矿业大学学报, 2001, 30(6): 527-530. doi: 10.3321/j.issn:1000-1964.2001.06.001 CHEN Q R, YANG Y F. Development of high effective dry coal beneficiation technology in 21st century [J]. Journal of China University of Mining & Technology, 2001, 30(6): 527-530(in Chinese). doi: 10.3321/j.issn:1000-1964.2001.06.001
[45] 李洪跃. 选煤在洁净煤技术中的作用分析 [J]. 煤炭与化工, 2015, 38(7): 127-128. LI H Y. Coal preparation application in cleaning coal technology [J]. Coal and Chemical Industry, 2015, 38(7): 127-128(in Chinese).
[46] WANG M S, SONG D Y, ZHENG B S, et al. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents [J]. Annals of the New York Academy of Sciences, 2008, 1140: 321-324. doi: 10.1196/annals.1454.018 [47] SONG G C, XU W T, JI P, et al. Study on the transformation of arsenic and lead in pyrite during thermal conversion [J]. Energy & Fuels, 2019, 33(9): 8463-8470. [48] ZHOU C C, LIU G J, WU D, et al. Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China [J]. Chemosphere, 2014, 95: 193-199. doi: 10.1016/j.chemosphere.2013.08.065 [49] CAO Y Z, NIU X R, GUO S Q, et al. Release behavior of arsenic during pyrolysis of two Chinese coal gangues [J]. Journal of the Brazilian Chemical Society, 2019, 30(9): 1801-1806. [50] LONG J, ZHANG S X, LUO K L. Selenium in Chinese coal gangue: Distribution, availability, and recommendations [J]. Resources, Conservation and Recycling, 2019, 149: 140-150. doi: 10.1016/j.resconrec.2019.05.039 [51] 段磊, 孙亚乔, 王晓冬, 等. 不同风化程度煤矸石中重金属释放及潜在生态风险 [J]. 安全与环境学报, 2021, 21(2): 874-881. doi: 10.13637/j.issn.1009-6094.2020.0306 DUAN L, SUN Y Q, WANG X D, et al. Potential ecological risks of heavy metals in the coal gangue and their release in different weathering degrees [J]. Journal of Safety and Environment, 2021, 21(2): 874-881(in Chinese). doi: 10.13637/j.issn.1009-6094.2020.0306
[52] 王文峰, 秦勇, 宋党育. 煤中有害元素的洗选洁净潜势 [J]. 燃料化学学报, 2003, 31(4): 295-299. doi: 10.3969/j.issn.0253-2409.2003.04.002 WANG W F, QIN Y, SONG D Y. Cleaning potential of hazardous elements during coal washing [J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 295-299(in Chinese). doi: 10.3969/j.issn.0253-2409.2003.04.002
[53] TANG Y G, YANG C W, FINKELMAN R B, et al. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields [J]. Energy & Fuels, 2020, 34(2): 2501-2515. [54] 郭纪伟, 苗瑞灿, 杨历, 等. 燃煤电厂砷排放控制技术研究进展 [J]. 化工环保, 2019, 39(4): 381-386. doi: 10.3969/j.issn.1006-1878.2019.04.003 GUO J W, MIAO R C, YANG L, et al. Research progress of arsenic emission control technology in coal-fired power plant [J]. Environmental Protection of Chemical Industry, 2019, 39(4): 381-386(in Chinese). doi: 10.3969/j.issn.1006-1878.2019.04.003
[55] 王明仕, 郑宝山, R B Finkelman, 等. 煤中砷赋存状态与其脱洗率的关系 [J]. 燃料化学学报, 2005, 33(2): 253-256. doi: 10.3969/j.issn.0253-2409.2005.02.024 WANG M S, ZHENG B S, FINKELMAN R, et al. Relationship between occurrence mode of arsenic in coal and its washing rate [J]. Journal of Fuel Chemistry and Technology, 2005, 33(2): 253-256(in Chinese). doi: 10.3969/j.issn.0253-2409.2005.02.024
[56] 王德永. 煤中砷含量分布特征与分级研究 [J]. 煤质技术, 2000(6): 27-30. WANG D Y. Study on the distribution characteristics and classification of arsenic content in coal [J]. Coal Quality Technology, 2000(6): 27-30(in Chinese).
[57] 秦勇, 王文峰, 宋党育. 太西煤中有害元素在洗选过程中的迁移行为与机理 [J]. 燃料化学学报, 2002, 30(2): 147-150. doi: 10.3969/j.issn.0253-2409.2002.02.010 QIN Y, WANG W F, SONG D Y. Migrating behavior and mechanism of deleterious elements in Taixi coals during cleaning process [J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 147-150(in Chinese). doi: 10.3969/j.issn.0253-2409.2002.02.010
[58] 宋党育, 秦勇, 张军营, 等. 西部煤中有害痕量元素的洗选脱除特性 [J]. 中国矿业大学学报, 2006, 35(2): 255-259, 282. doi: 10.3321/j.issn:1000-1964.2006.02.024 SONG D Y, QIN Y, ZHANG J Y, et al. Washability characteristics of hazardous trace elements in coals from western region of China [J]. Journal of China University of Mining & Technology, 2006, 35(2): 255-259, 282(in Chinese). doi: 10.3321/j.issn:1000-1964.2006.02.024
[59] 王琳. 煤炭洗选脱除煤中有害微量元素的实验研究 [J]. 洁净煤技术, 2007, 13(3): 13-17. doi: 10.3969/j.issn.1006-6772.2007.03.003 WANG L. The study on removal of trace elements in coal by coal preparation [J]. Clean Coal Technology, 2007, 13(3): 13-17(in Chinese). doi: 10.3969/j.issn.1006-6772.2007.03.003
[60] TANG Y G, CHANG C X, ZHANG Y Z, et al. Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan coalfield, Hebei Province, China [J]. Energy Exploration & Exploitation, 2009, 27(2): 143-152. [61] 宋党育, 张晓逵, 张军营, 等. 煤中有害微量元素的洗选迁移特性 [J]. 煤炭学报, 2010, 35(7): 1170-1176. doi: 10.13225/j.cnki.jccs.2010.07.012 SONG D Y, ZHANG X K, ZHANG J Y, et al. Migration characteristics of hazardous trace elements in coal in the process of flotation [J]. Journal of China Coal Society, 2010, 35(7): 1170-1176(in Chinese). doi: 10.13225/j.cnki.jccs.2010.07.012
[62] 张燕青, 黄满红, 戚芳方, 等. 煤矸石中金属和酸根离子的淋溶特性 [J]. 环境化学, 2014, 33(3): 452-458. doi: 10.7524/j.issn.0254-6108.2014.03.008 ZHANG Y Q, HUANG M H, QI F F, et al. The leaching characteristics of metals and acid radical ions in gangue [J]. Environmental Chemistry, 2014, 33(3): 452-458(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.03.008
[63] LI S, GONG H Y, HU H Y, et al. Re-using of coal-fired fly ash for arsenic vapors in situ retention before SCR catalyst: Experiments and mechanisms [J]. Chemosphere, 2020, 254: 126700. doi: 10.1016/j.chemosphere.2020.126700 [64] WANG J W, ZHANG Y S, WANG T, et al. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant [J]. Chemical Engineering Journal, 2020, 380: 122561. doi: 10.1016/j.cej.2019.122561 [65] 郭胜利, 李东伟, 耿伟乐, 等. 调制碳酸钙对燃煤重金属As, Cd, Zn的排放控制 [J]. 煤炭学报, 2015, 40(12): 2967-2973. GUO S L, LI D W, GENG W L, et al. Controlling effect of the modified calcium carbonate on the capture of As, Cd and Zn during coal combustion [J]. Journal of China Coal Society, 2015, 40(12): 2967-2973(in Chinese).
[66] ZHAO B, CHEN G, QIN L B, et al. Effect of coal blending on arsenic and fine particles emission during coal combustion [J]. Journal of Cleaner Production, 2021, 311: 127645. doi: 10.1016/j.jclepro.2021.127645 [67] HAN J, LIANG Y S, ZHAO B, et al. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1356-1364. doi: 10.1016/S1872-5813(20)30089-X [68] 刘慧敏, 王春波, 郭永成, 等. 高砷褐煤与低砷烟煤混燃砷的挥发特性及模型 [J]. 化工学报, 2016, 67(10): 4477-4484. LIU H M, WANG C B, GUO Y C, et al. Experimental and modeling study on arsenic volatilization during co-combustion of high arsenic lignite and low arsenic bituminous coal [J]. CIESC Journal, 2016, 67(10): 4477-4484(in Chinese).
[69] LIU H M, WANG C B, ZHANG Y, et al. Experimental and modeling study on the volatilization of arsenic during co-combustion of high arsenic lignite blends [J]. Applied Thermal Engineering, 2016, 108: 1336-1343. doi: 10.1016/j.applthermaleng.2016.07.187 [70] 刘彦, 周俊虎, 张永生, 等. 金属盐对O2/CO2煤粉混燃钙基脱硫反应的影响 [J]. 燃料化学学报, 2004, 32(5): 531-536. doi: 10.3969/j.issn.0253-2409.2004.05.005 LIU Y, ZHOU J H, ZHANG Y S, et al. The effect of metallic salt additives on calcium-based desulfurization in O2-CO2 pulverized coal combustion [J]. Journal of Fuel Chemistry and Technology, 2004, 32(5): 531-536(in Chinese). doi: 10.3969/j.issn.0253-2409.2004.05.005
[71] TANG Q, LIU G J, YAN Z C, et al. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China [J]. Fuel, 2012, 95: 334-339. doi: 10.1016/j.fuel.2011.12.052 [72] TIAN H Z, WANG Y, XUE Z G, et al. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007 [J]. Science of the Total Environment, 2011, 409(16): 3078-3081. doi: 10.1016/j.scitotenv.2011.04.039 [73] YANG J P, LI Q, ZHAO Y C, et al. Trace element emissions from coal-fired power plants[M]//Emission and Control of Trace Elements from Coal-Derived Gas Streams. Amsterdam: Elsevier, 2019: 227-285. [74] MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations [J]. Atmospheric Environment, 2007, 41(40): 9262-9272. doi: 10.1016/j.atmosenv.2007.04.042 [75] ZHAO S L, DUAN Y F, CHEN L, et al. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury [J]. Environmental Pollution, 2017, 229: 863-870. doi: 10.1016/j.envpol.2017.07.043 [76] 赵永椿, 马斯鸣, 杨建平, 等. 燃煤电厂污染物超净排放的发展及现状 [J]. 煤炭学报, 2015, 40(11): 2629-2640. doi: 10.13225/j.cnki.jccs.2015.8001 ZHAO Y C, MA S M, YANG J P, et al. Status of ultra-low emission technology in coal-fired power plant [J]. Journal of China Coal Society, 2015, 40(11): 2629-2640(in Chinese). doi: 10.13225/j.cnki.jccs.2015.8001
[77] HAN D M, WU Q R, WANG S X, et al. Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting [J]. Science of the Total Environment, 2021, 754: 142285. doi: 10.1016/j.scitotenv.2020.142285 [78] 许豪, 张成, 袁昌乐, 等. 模拟烟气气氛下矿物元素组分对砷的吸附特性研究 [J]. 燃料化学学报, 2019, 47(7): 876-883. doi: 10.3969/j.issn.0253-2409.2019.07.013 XU H, ZHANG C, YUAN C L, et al. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere [J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 876-883(in Chinese). doi: 10.3969/j.issn.0253-2409.2019.07.013
[79] CHARPENTEAU C, SENEVIRATNE R, GEORGE A, et al. Screening of low cost sorbents for arsenic and mercury capture in gasification systems [J]. Energy & Fuels, 2007, 21(5): 2746-2750. [80] LÓPEZ-ANTÓN M A, DÍAZ-SOMOANO M, FIERRO J L G, et al. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons [J]. Fuel Processing Technology, 2007, 88(8): 799-805. doi: 10.1016/j.fuproc.2007.03.005 [81] PLAYER R L, WOUTERLOOD H J. Removal and recovery of arsenous oxide from flue gases. A pilot study of the activated carbon process [J]. Environmental Science & Technology, 1982, 16(11): 808-814. [82] YAP P L, NINE M J, HASSAN K, et al. Graphene-based sorbents for multipollutants removal in water: A review of recent progress [J]. Advanced Functional Materials, 2021, 31(9): 2007356. doi: 10.1002/adfm.202007356 [83] HAGHGOO S, NEKOEI A R. Metal oxide adsorption on fullerene C60 and its potential for adsorption of pollutant gases;density functional theory studies [J]. RSC Advances, 2021, 11(28): 17377-17390. doi: 10.1039/D1RA02251B [84] SALEH T A, AGARWAL S, GUPTA V K. Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate [J]. Applied Catalysis B:Environmental, 2011, 106(1/2): 46-53. [85] WU D W, LIU J, YANG Y J, et al. The role of SO2 in arsenic removal by carbon-based sorbents: A DFT study [J]. Chemical Engineering Journal, 2021, 410: 128439. doi: 10.1016/j.cej.2021.128439 [86] 王泉海, 刘迎晖, 张军营, 等. CaO对烟气中砷的形态和分布的影响 [J]. 环境科学学报, 2003, 23(4): 549-551. doi: 10.3321/j.issn:0253-2468.2003.04.028 WANG Q H, LIU Y H, ZHANG J Y, et al. Effect of CaO on the speciation of arsenic in flue gases [J]. Acta Scientiae Circumstantiae, 2003, 23(4): 549-551(in Chinese). doi: 10.3321/j.issn:0253-2468.2003.04.028
[87] CAO Y, SONG B, SONG M, et al. Capture of arsenic in coal combustion flue gas at high temperature in the presence of CaSiO3 with good anti-sintering [J]. Fuel Processing Technology, 2020, 205: 106428. doi: 10.1016/j.fuproc.2020.106428 [88] CHEN D K, HU H Y, XU Z, et al. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2 [J]. Chemical Engineering Journal, 2015, 267: 201-206. doi: 10.1016/j.cej.2015.01.035 [89] STERLING R O, HELBLE J J. Reaction of arsenic vapor species with fly ash compounds: kinetics and speciation of the reaction with calcium silicates [J]. Chemosphere, 2003, 51(10): 1111-1119. doi: 10.1016/S0045-6535(02)00722-1 [90] SONG B, SONG M, CHEN D D, et al. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO [J]. Fuel, 2020, 259: 116249. doi: 10.1016/j.fuel.2019.116249 [91] LI Y Z, TONG H L, ZHUO Y Q, et al. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of product layer on mass transfer [J]. Environmental Science & Technology, 2006, 40(13): 4306-4311. [92] ZHANG Y, WANG C B, LI W H, et al. Removal of gas-phase As2O3 by metal oxide adsorbents: Effects of experimental conditions and evaluation of adsorption mechanism [J]. Energy & Fuels, 2015, 29(10): 6578-6585. [93] FU B, HOWER J C, LI S, et al. The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations [J]. Journal of Hazardous Materials, 2021, 415: 125610. doi: 10.1016/j.jhazmat.2021.125610 [94] ZHANG Y, WANG C B, LIU H M. Experiment and mechanism research on gas-phase As2O3 adsorption of Fe2O3/γ-Al2O3 [J]. Fuel, 2016, 181: 1034-1040. doi: 10.1016/j.fuel.2016.04.141 [95] ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) surface [J]. Energy & Fuels, 2019, 33(2): 1414-1421. [96] ZHANG K H, ZHANG D X, ZHANG K, et al. Capture of gas-phase arsenic by ferrospheres separated from fly ashes [J]. Energy & Fuels, 2016, 30(10): 8746-8752. [97] HU P B, WENG Q Y, LI D L, et al. Research on the removal of As2O3 by γ-Al2O3 adsorption based on density functional theory [J]. Chemosphere, 2020, 257: 127243. doi: 10.1016/j.chemosphere.2020.127243 [98] HU H Y, CHEN D K, LIU H, et al. Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases [J]. Chemosphere, 2017, 180: 186-191. doi: 10.1016/j.chemosphere.2017.03.114 [99] HUANG Y D, YANG Y H, HU H Y, et al. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO [J]. Proceedings of the Combustion Institute, 2019, 37(3): 2951-2957. doi: 10.1016/j.proci.2018.06.136 [100] XING J Y, WANG C B, ZHANG Y, et al. A deep insight into the role of O2 on As2O3 capture over γ-Al2O3 sorbent: Experimental and DFT study [J]. Chemical Engineering Journal, 2021, 410: 128311. doi: 10.1016/j.cej.2020.128311 [101] BALTRUS J P, GRANITE E J, PENNLINE H W, et al. Surface characterization of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas [J]. Fuel, 2010, 89(6): 1323-1325. doi: 10.1016/j.fuel.2009.09.030 [102] POULSTON S, GRANITE E J, PENNLINE H W, et al. Palladium based sorbents for high temperature arsine removal from fuel gas [J]. Fuel, 2011, 90(10): 3118-3121. doi: 10.1016/j.fuel.2011.05.012 [103] RUPP E C, GRANITE E J, STANKO D C. Laboratory scale studies of Pd/γ-Al2O3 sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures [J]. Fuel, 2013, 108: 131-136. doi: 10.1016/j.fuel.2010.12.013 [104] HE K Q, YUAN C G, JIANG Y H, et al. Synergistic effects of Fe-Mn binary oxide for gaseous arsenic removal in flue gas [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111491. doi: 10.1016/j.ecoenv.2020.111491 [105] HE K Q, YUAN C G, JIANG Y H, et al. Highly efficient sorption and immobilization of gaseous arsenic from flue gas on MnO2/attapulgite composite with low secondary leaching risks [J]. Journal of Cleaner Production, 2021, 292: 126003. doi: 10.1016/j.jclepro.2021.126003 [106] PAN H, HOU H J, CHEN J, et al. Adsorption of arsenic on iron modified attapulgite (Fe/ATP): Surface complexation model and DFT studies [J]. Adsorption, 2018, 24(5): 459-469. doi: 10.1007/s10450-018-9959-9 [107] WANG C B, ZHANG Y, LIU H M. Experimental and mechanism study of gas-phase arsenic adsorption over Fe2O3/γ-Al2O3 sorbent in oxy-fuel combustion flue gas [J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10656-10663. [108] WANG T, ISHIDA T, GU R, et al. Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste [J]. Construction and Building Materials, 2021, 267: 121012. doi: 10.1016/j.conbuildmat.2020.121012 [109] 鲁敏, 熊祖鸿, 房科靖, 等. 粉煤灰基催化材料的研究进展 [J]. 环境化学, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907 LU M, XIONG Z H, FANG K J, et al. Coal fly ash based catalytic materials: A review [J]. Environmental Chemistry, 2019, 38(2): 297-305(in Chinese). doi: 10.7524/j.issn.0254-6108.2018040907
[110] 尚洪山, 杨帆, 寇元. 固态合成粉煤灰类脱硫吸附剂的制备及表征 [J]. 环境化学, 2003, 22(6): 529-533. doi: 10.3321/j.issn:0254-6108.2003.06.001 SHANG H S, YANG F, KOU Y. The preparation and characterization upon solid-state synthesis of a SO2 sorbent from fly ash [J]. Environmental Chemistry, 2003, 22(6): 529-533(in Chinese). doi: 10.3321/j.issn:0254-6108.2003.06.001
[111] 刘静超, 赵永椿, 何永来, 等. 330 MW燃煤机组异相凝并对重金属排放控制的实验研究 [J]. 燃料化学学报, 2020, 48(11): 1386-1393. doi: 10.3969/j.issn.0253-2409.2020.11.012 LIU J C, ZHAO Y C, HE Y L, et al. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1386-1393(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.11.012
[112] 李扬, 何永来, 靳立军, 等. 燃煤电厂异相凝并飞灰重金属淋滤特性 [J]. 燃料化学学报, 2020, 48(11): 1394-1401. doi: 10.3969/j.issn.0253-2409.2020.11.013 LI Y, HE Y L, JIN L J, et al. Leaching characteristics of trace elements in hetero-aggregation fly ash from coal-fired power plant [J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1394-1401(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.11.013
[113] 赵毅, 仇稳, 马宵影, 等. CH3COOOH/H2O2液相氧化脱除烟气中砷的实验研究 [J]. 河南师范大学学报(自然科学版), 2017, 45(6): 37-41,2. ZHAO Y, QIU W, MA X Y, et al. Experimental study on the removal of arsenic from flue gas by CH3COOOH/H2O2 oxidation method [J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(6): 37-41,2(in Chinese).
[114] 赵毅, 仇稳, 王佳男, 等. 烟气中As2O3的氧化脱除试验 [J]. 河南科技大学学报(自然科学版), 2017, 38(4): 94-97,121. ZHAO Y, QIU W, WANG J N, et al. Oxidation removal experiment of As2O3 in flue gas [J]. Journal of Henan University of Science and Technology (Natural Science), 2017, 38(4): 94-97,121(in Chinese).
[115] 赵毅, 仇稳, 杨丽娟, 等. 高锰酸钾溶液脱除烟气中砷的实验研究 [J]. 河南理工大学学报(自然科学版), 2017, 36(6): 81-86. doi: 10.16186/j.cnki.1673-9787.2017.06.013 ZHAO Y, QIU W, YANG L J, et al. Experimental study on the arsenic removal of flue gas by KMnO4 solution [J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(6): 81-86(in Chinese). doi: 10.16186/j.cnki.1673-9787.2017.06.013
[116] ZHAO Y, QIU W, YANG C Y, et al. Removal of arsenic from flue gas by using NaClO solution [J]. Chemical Engineering Journal, 2017, 309: 1-6. doi: 10.1016/j.cej.2016.10.007 [117] ZHAO Y, QIU W. Arsenic oxidation and removal from flue gas using H2O2/Na2S2O8 solution [J]. Fuel Processing Technology, 2017, 167: 355-362. doi: 10.1016/j.fuproc.2017.07.021 [118] ZHAO Y, QIU W, SUN Z H. Removal of arsenic from flue gas using NaClO/NaClO2 complex absorbent [J]. Chemical Engineering Research and Design, 2019, 144: 505-511. doi: 10.1016/j.cherd.2019.02.037