-
随着人民生活水平的提高,消费者对食品的营养卫生和使用安全保障方面提出了更高要求,水产品进入了绿色水产品阶段[1]. 我国是世界水产养殖大国,产量占世界水产养殖总量的60%以上,抗生素、中草药和生物制品等渔药作为用于水产方面来保障水环境动植物安全生长的药物,被广泛用于水产养殖业[2]. 适当的渔药使用可以有效防控鱼病发生,促进动物的生长发育[3]. 但实际中滥用现象造成药物残留,易产生耐药菌株,破坏水生物微生态平衡[4],导致水产品质量安全难以保障. 人体若长期食用含药物残留的动物性食品或接触残留环境,可能会引起变态反应、内分泌紊乱等健康问题[5]. 为达到绿色水产品要求,我国大力提倡健康养殖模式,养殖过程中不滥用防治药物,做好渔药残留监测工作,推动水产养殖业绿色可持续发展[6]. 目前循环水养殖系统因高效、节水、节能、减排的优点而成为最有前途的养殖模式之一,对渔业绿色可持续发展有着突出贡献,且现阶段循环水的健康养殖将是水产养殖产业绿色高质量发展及实现绿色水产品的重要途径. 因此,建立海水循环水养殖系统中渔药的快速、高效检测方法具有重要意义.
由于水体中药物残留浓度一般在纳克到微克每升数量级之间[7-8],且种类繁多,残留机制复杂,目前缺乏统一的国家标准用于环境样品中多类、多种药物的同步检测技术. 根据养殖水体特点,常用的水样前处理技术有固相萃取(SPE)、液液萃取、分散液液微萃取等[9]. 但都存在一些不足,传统的固相萃取存在有机试剂使用量大、耗时长、分析工作繁琐等缺点[10]. 已有的检测技术主要包括酶联免疫分析法、微生物检测法、毛细管电泳法和色谱法和质谱联用技术[11-14],前三种方法的特异性不够高,只能达到定性筛查,以及对同种类、小数量环境样品中抗生素含量的定量分析. 由于养殖水体中是多种渔药同时存在的情况,所以将色谱与质谱技术联用可以提高渔药定性、定量分析的可靠性、准确性及灵敏度,在药物检测中应用最广[15]. 近些年,随着分析仪器的不断升级与更新,在线固相萃取与液相色谱-串联质谱联用已成为一项相对成熟的检测技术[16-17]. 该技术通过六通阀将SPE柱与液相色谱-质谱(LC-MS/MS)相联接,将目标物富集到在线固相萃取柱上,目标组分通过柱切换阀从萃取柱转移到分析柱,实现了样品处理和分析的一体化[18],智能化程度高,稳定性好,大大节省了人力、物力和财力.
本研究将在线固相萃取和液相色谱串联质谱技术结合,建立了海水循环水养殖系统中大环内酯类(macrolides)、磺胺类(sulfonamides)、喹诺酮类(fluoroquinolones)、四环素类(tetracyclines)和孔雀石绿(malachite green)等15种常用药物的同时定量分析方法,并成功应用于实际样品测定. 该方法可为深入了解我国海水循环水养殖系统中抗生素的赋存水平及评估其环境生态风险提供参考依据,为水产品的绿色发展带来技术支持.
在线固相萃取-液相色谱-串联质谱法同时检测海水养殖水体中15种药物
Simultaneous determination of 15 drugs in mariculture water by on-line solid phase extraction liquid chromatography-tandem mass spectrometry
-
摘要: 采用在线固相萃取-液相色谱-串联质谱联用(On-line SPE-LC-MS/MS)技术,建立海水循环水养殖系统中磺胺类(磺胺甲基异恶唑、磺胺噻唑、磺胺嘧啶、磺胺甲基嘧啶、磺胺二甲嘧啶)、大环内酯类(克拉霉素、脱水红霉素)、喹诺酮类(恩诺沙星、氧氟沙星、诺氟沙星)、四环素类(金霉素、四环素、土霉素)13种抗生素及孔雀石绿、隐色孔雀石绿共15种药物的同时检测方法,为循环水养殖海水中部分有机污染物的检验鉴定提供依据. 采用0.1%(V/V)甲酸水溶液和0.1%(V/V)甲酸的乙腈-甲醇(1∶1,V/V)溶液为分析流动相,水样经简单酸化处理后直接进样0.9 mL进行On-line SPE-LC-MS/MS检测,经在线固相萃取柱富集后,经过梯度洗脱分离,串联质谱多反应监测模式进行定性、定量分析测定. 结果表明,15种目标化合物在1—100 ng·L−1范围内均具有良好的线性响应,方法检出限范围为0.02—1.00 ng·L−1,定量限范围为0.06—3.00 ng·L−1. 采用该方法对山东省烟台市某水产公司2个海水循环水养殖系统的15个点位水样进行了检测. 研究表明,在线固相萃取技术实现了样品处理和分析一体化,在一般液相色谱分析基础上缩短了时间,达到常规实验条件下的高通量分析,此方法高效、灵敏、操作简便,可用于海水循环水养殖系统中15种药物的种类和质量浓度的同步测定.Abstract: A method for the simultaneous determination of thirteen kinds of antibiotics, malachite green and leucomalachite green in seawater recirculating aquaculture system was established using on-line solid phase extraction and liquid chromatography-tandem mass spectrometry (On-line SPE-LC-MS/MS), the antibiotics included sulfonamides (sulfamethoxazole, sulfathiazole, sulfadiazine, sulfamerazine, sulfamethazine), macrolides (clarithromycin, anhydro erythromycin A), quinolones (enrofloxacin, ofloxacin, norfloxacin), tetracyclines (chlortetracycline, tetracycline, terramycin). This method could provide a basis for the detection and identification of some organic pollutants in recirculating aquaculture seawater. 0.1% (V/V) formic acid and 0.1% (V/V) formic acid in acetonitrile-methanol (1:1, V/V) solution were used as the mobile phase. After treated with simple acidification, 0.9 mL sample was directly injected for on-line SPE-LC-MS/MS detection. The sample was enriched by on-line solid phase extraction column and separated by gradient elute, then the qualitative and quantitative analysis was carried out by tandem mass spectrometry multi-reaction monitoring (MRM) mode. The results showed that fifteen kinds of target compounds all had good linear response in the range of 1—100 ng·L−1. The method detection limits were 0.02—1.00 ng·L−1 and the method quantification limits were 0.06—3.00 ng·L−1. This method was applied to the analysis of fifteen water samples from two recirculating aquaculture systems of an aquaculture company in Yantai city, Shandong Province. The study showed that the on-line solid phase extraction technology realized the integration of sample processing and analysis, shortened analysis time on the basis of conventional liquid chromatography, and realized high-throughput analysis under conventional experimental conditions. This method was efficient, sensitive and easy to operate, and it was suitable for the simultaneous determination of fifteen drugs in recirculating aquaculture system.
-
表 1 上样泵梯度程序
Table 1. Loading pump gradient program
时间/min
Time流动相A/%
Mobile phase A流动相B/%
Mobile phase B流速/(mL·min−1)
Current speed0 100 0 1.5 5 100 0 1.5 6 0 100 1.5 9 0 100 1.5 10 100 0 1.5 15 100 0 1.5 表 2 分析泵梯度程序
Table 2. Analysis of pump gradient procedures
时间/min
Time流动相A /%
Mobile phase A流动相B /%
Mobile phase B流速/(mL·min−1)
Current speed0 80 20 0.25 5 80 20 0.25 8 75 25 0.25 11 40 60 0.25 13 10 90 0.25 15 0 100 0.25 表 3 15种目标药物的质谱参数
Table 3. MS parameters of 15 target drugs
化合物
Compound保留时间
Retention
time离子源模式
Ion source
mode母离子
Parent
ion m/z碎裂电压/V
Fragmentation
voltage子离子
Daughter
ion m/z碰撞能量/eV
Collision
energy磺胺嘧啶
(Sulfadiazine, SDZ)6.65 + 250.9 100 92.1* 33 155.9 13 磺胺噻唑
(Sulfathiazole, STZ)6.81 + 256 105 156* 13 92 29 磺胺甲基嘧啶
(Sulfamerazine, SMR)7.10 + 265 115 92* 33 156 17 磺胺二甲基嘧啶
(Sulfamethazine, SMZ)7.60 + 278.9 120 185.9* 17 92.0 33 土霉素
(Oxytetracycline, OTC)7.41 + 461.1 115 426.1* 21 443.1 11 氧氟沙星
(Ofloxacin, OFL)7.36 + 362.0 140 318.1* 21 261 29 诺氟沙星
(Norfloxacin, NOR)7.47 + 320.0 130 302.1* 25 276.1 17 四环素
(Tetracycline, TET)7.73 + 445.1 120 410.1* 20 154 22 恩诺沙星
(Enrofloxacin, ENR)8.17 + 360.1 130 316.1* 21 342.1 25 磺胺甲基异恶唑
(Sulfamethoxazole, SMX)9.46 + 254.0 104 92.0* 29 155.9 17 金霉素
(Chlortetracycline, CTC)9.85 + 479 135 444* 22 462 16 克拉霉素
(Clarithromycin, CLR)12.01 + 748.4 165 158* 29 590.3 21 孔雀石绿
(Malachite Green, MG)12.14 + 329.2 160 314.2* 38 285.1 42 隐色孔雀石绿
(Leucomalachite Green, LMG)12.17 + 331.2 160 239.1* 30 223.1 55 脱水红霉素
(Anhydro Erythromycin A,ERY-H2O)11.67 + 716.4 150 158.1* 25 558.4 9 *定量碎片离子. quantitative fragment ion. 表 4 目标物的线性方程、检出限、定量限
Table 4. Linear equation, method detection limit and quantification limit of target compound
化合物
Compound线性方程
Linear equation相关系数
Correlation coefficient(R2)检出限LOD /
(ng·L−1)定量限LOQ /
(ng·L−1)磺胺嘧啶(Sulfadiazine, SDZ) y=25.527x+18.273 0.9996 1.00 3.00 磺胺噻唑(Sulfathiazole, STZ) y=23.468x+17.751 0.9998 0.50 1.50 磺胺甲基嘧啶(Sulfamerazine, SMR) y=97.287x+73.169 0.9995 0.15 0.45 磺胺二甲基嘧啶(Sulfamethazine, SMZ) y=170.79x+40.775 0.9997 0.03 0.09 土霉素(Oxytetracycline, OTC) y=44.155x-14.424 0.9998 0.05 0.15 氧氟沙星(Ofloxacin, OFL) y=174.59x+160.71 0.9999 0.02 0.06 诺氟沙星(Norfloxacin, NOR) y=14.584x+2.6525 0.9972 1.00 3.00 四环素(Tetracycline, TC) y=56.62x-12.389 0.9999 1.00 3.00 恩诺沙星(Enrofloxacin, ENR) y=8.8106x-8.0198 0.9993 1.00 3.00 磺胺甲基异恶唑(Sulfamethoxazole, SMX) y=4.1178x+0.5746 0.9997 2.00 6.00 金霉素(Chlortetracycline, CTC) y=1.9264x-0.42 0.9992 1.00 3.00 克拉霉素(Clarithromycin, CLR) y=64.992x+120.85 0.9983 0.10 0.30 孔雀石绿(Malachite Green, MG) y=89.22x-25.492 0.9999 0.05 0.15 隐色孔雀石绿(Leucomalachite Green, LMG) y=13.782x+23.408 0.9994 1.00 3.00 脱水红霉素(Anhydro Erythromycin A,ERY-H2O) y=90.259x-283.68 0.9994 0.10 0.30 表 5 2021年6月牙鲆养殖系统检测结果(ng·L−1)
Table 5. Detection results of Scophthalmus maximus culture system in June 2021
化合物
Compound源水
Source
water进水
Inlet养殖水
Aquaculture water尾水
Tailwater微滤机Microfiltration
machine一级净化
Primary
purification二级净化
Secondary
purification三级净化
Tertiary
purification四级净水
Four stage
purification磺胺嘧啶 SDZ ND. 1.33 ND. ND. ND. 9.00 ND. ND. 2.68 磺胺噻唑STZ 3.41 2.33 0.86 ND. ND. 4.56 ND. ND. 0.76 磺胺甲基嘧啶 SMR ND. 0.23 ND. ND. ND. 0.59 ND. ND. 1.15 磺胺二甲基嘧啶SMZ 0.15 1.22 0.04 0.25 0.06 2.40 ND. ND. 2.47 土霉素OTC 392.03 152.86 130.05 96.74 305.21 148.50 107.05 126.98 138.66 氧氟沙星 OFL 10.88 3.39 2.42 1.16 9.57 13.21 1.91 2.20 4.77 诺氟沙星 NOR 32.52 28.91 16.6 13.99 13.64 54.74 25.59 22.65 20.80 四环素TC 8.96 4.59 3.49 3.32 4.39 6.11 1.49 5.62 4.75 恩诺沙星ENR 7.56 6.31 8.01 4.34 8.75 16.39 6.88 8.93 7.77 磺胺甲基异恶唑SMX 8.03 5.98 ND. ND. ND. 7.99 ND. ND. 7.94 金霉素 CTC ND. ND. ND. ND. ND. ND. ND. ND. ND. 克拉霉素 CLR ND. 5.52 1.15 1.14 1.14 2.03 ND. ND. 0.22 孔雀石绿MG ND. ND. ND. ND. ND. ND. ND. ND. ND. 隐色孔雀石绿LMG ND. ND. ND. ND. ND. ND. ND. ND. ND. 脱水红霉素ERY-H2O 4.20 7.83 13.52 4.27 4.73 5.12 3.87 3.73 4.16 ND., 未检出. ND., not detected. 表 6 2021年6月珍珠龙胆石斑鱼养殖系统检测结果(ng·L−1)
Table 6. Detection results of pearl Gentian grouper culture system in June 2021
化合物
Compound进水
Inlet养殖水
Aquaculture
water尾水
Tailwater微滤机
Microfiltration
machine一级净化
Primary
purification二级净化
Secondary
purification磺胺嘧啶 SDZ 12.40 10.35 5.41 2.67 6.61 7.00 磺胺噻唑STZ ND. ND. ND. ND. ND. ND. 磺胺甲基嘧啶 SMR ND. ND. ND. ND. ND. ND. 磺胺二甲基嘧啶SMZ 1.02 ND. 0.55 0.28 0.16 0.22 土霉素OTC 20.56 72.46 101.52 97.26 81.72 62.60 氧氟沙星 OFL 4.19 8.11 47.42 3.46 2.34 10.37 诺氟沙星 NOR 9.23 24.03 17.37 32.37 12.93 53.77 四环素TC 2.63 5.63 1.81 2.50 3.33 3.51 恩诺沙星ENR 4.01 29.99 90.53 50.82 40.12 26.60 磺胺甲基异恶唑SMX 5.26 ND. ND. ND. ND. ND. 金霉素 CTC ND. ND. ND. ND. ND. ND. 克拉霉素 CLR ND. ND. ND. ND. ND. ND. 孔雀石绿MG ND. ND. ND. ND. ND. ND. 隐色孔雀石绿LMG ND. ND. ND. ND. ND. ND. 脱水红霉素ERY-H2O 3.46 3.52 3.91 3.47 3.47 3.54 ND., 未检出, not detected. 表 7 目标药物预测无效应浓度
Table 7. Prediction of no effect concentration for target drug
表 8 养殖系统的生态风险等级评估
Table 8. Ecological risk assessment of Flounder culture system
化合物
CompoundRQ1 RQ2 风险等级
Risk levelSDZ 3.46×10−7 4.77×10−7 无风险 SMZ 1.24×10−5 5.1×10−6 无风险 SMX 1.43×10−5 9.39×10−6 无风险 STZ 2.40×10−5 ND. 无风险 SMR 2.01×10−5 ND. 无风险 NOR 1.77×10−6 ND. 无风险 OFL 6.95×10−7 2.50×10−6 无风险 ENR 3.34×10−6 1.85×10−5 无风险 TC 2.52×10−8 1.58×10−8 无风险 OTC 4.41×10−8 1.14×10−8 无风险 CLR 5.52×10−9 ND. 无风险 ERY-H2O 6.04×10−5 1.75×10−5 无风险 ND., 未检出. RQ1, 牙鲆养殖系统Paralichthys olivaceus culture system. RQ2, 珍珠龙胆石斑鱼养殖系统. Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂ culture system. -
[1] 陈都前. 绿色水产品发展思考 [J]. 中国渔业经济, 2004, 22(3): 23-24. doi: 10.3969/j.issn.1009-590X.2004.03.010 CHEN D Q. Thinking about development of green aquatic product [J]. Chinese Fisheries Economy Research, 2004, 22(3): 23-24(in Chinese). doi: 10.3969/j.issn.1009-590X.2004.03.010
[2] 杨先乐. 从一组数字剖析我国渔药发展的过往和对此的看法(上) [J]. 科学养鱼, 2021(10): 1-3. doi: 10.3969/j.issn.1004-843X.2021.10.001 YANG X L. Analysis on the past development of fishery medicine in China from a group of figures and views of this(Continued) [J]. Scientific Fish Farming, 2021(10): 1-3(in Chinese). doi: 10.3969/j.issn.1004-843X.2021.10.001
[3] 胡莹莹, 王菊英, 马德毅. 近岸养殖区抗生素的海洋环境效应研究进展 [J]. 海洋环境科学, 2004, 23(4): 76-80. doi: 10.3969/j.issn.1007-6336.2004.04.020 HU Y Y, WANG J Y, MA D Y. Research progress on environmental effect of antibiotic agents in marine aquaculture [J]. Marine Environmental Science, 2004, 23(4): 76-80(in Chinese). doi: 10.3969/j.issn.1007-6336.2004.04.020
[4] 李兆新, 董晓, 孙晓杰, 等. 渔业养殖环境中抗生素残留检测与控制技术研究进展 [J]. 食品安全质量检测学报, 2017, 8(7): 2678-2686. doi: 10.3969/j.issn.2095-0381.2017.07.046 LI Z X, DONG X, SUN X J, et al. Advances in the detection and control of antibiotic residues in aquaculture environments [J]. Journal of Food Safety & Quality, 2017, 8(7): 2678-2686(in Chinese). doi: 10.3969/j.issn.2095-0381.2017.07.046
[5] ARSÈNE M M J, DAVARES A K L, VIKTOROVNA P I, et al. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions [J]. Veterinary World, 2022, 15(3): 662-671. [6] 刘朋. 浅析山东省水产养殖用药减量技术措施 [J]. 中国水产, 2020(12): 56-58. LIU P. Analysis on the technical measures of aquaculture drug reduction in Shandong Province [J]. China Fisheries, 2020(12): 56-58(in Chinese).
[7] 安静. 水环境中痕量抗生素检测方法的研究进展 [J]. 环境与发展, 2019, 31(10): 176-178. doi: 10.16647/j.cnki.cn15-1369/X.2019.10.100 AN J. Methods on detection of antibiotics residues in aquatic environment [J]. Environment and Development, 2019, 31(10): 176-178(in Chinese). doi: 10.16647/j.cnki.cn15-1369/X.2019.10.100
[8] WANG Z, WANG X Y, TIAN H, et al. High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2019, 230: 337-346. doi: 10.1016/j.chemosphere.2019.05.047 [9] 施婵丽, 胡岱福. 现代环境监测有机分析新方法与新技术及其应用 [J]. 化工设计通讯, 2022, 48(4): 200-202. doi: 10.3969/j.issn.1003-6490.2022.04.067 SHI C L, HU D F. New methods and technologies of organic analysis in modern environmental monitoring and their applications [J]. Chemical Engineering Design Communications, 2022, 48(4): 200-202(in Chinese). doi: 10.3969/j.issn.1003-6490.2022.04.067
[10] 陈丹. 新型在线固相萃取技术的构建及其在尿液分析中的应用[D]. 武汉: 华中师范大学, 2019. CHEN D. Construction of novel online solid phase extraction technology and its application in urine analysis[D]. Wuhan: Central China Normal University, 2019(in Chinese).
[11] 崔敬鑫, 石秋俊, 王国民, 等. 超高效液相色谱-串联质谱法同时测定环境水样中的15种抗生素 [J]. 环境化学, 2020, 39(4): 1065-1074. doi: 10.7524/j.issn.0254-6108.2019042902 CUI J X, SHI Q J, WANG G M, et al. Simultaneous determination of 15 antibiotics in environmental water samples by ultra performance liquid chromatography- tandem mass spectrometry [J]. Environmental Chemistry, 2020, 39(4): 1065-1074(in Chinese). doi: 10.7524/j.issn.0254-6108.2019042902
[12] PANDITI V R, BATCHU S R, GARDINALI P R. Online solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters [J]. Analytical and Bioanalytical Chemistry, 2013, 405(18): 5953-5964. doi: 10.1007/s00216-013-6863-8 [13] 梁艳冰. 浅谈食品中抗生素残留的常用检测技术 [J]. 中国食品工业, 2021(1): 60-61. LIANG Y B. Common detection techniques of antibiotic residues in food [J]. China Food Industry, 2021(1): 60-61(in Chinese).
[14] WEN M. Brief report on Liquid Chromatography Mass Spectrometry (LC-MS)[J]. Journal of Environmental Analytical Chemistry, 2021, 8(9). [15] DO T C M V, NGUYEN D Q, NGUYEN T D, et al. Development and validation of a LC-MS/MS method for determination of multi-class antibiotic residues in aquaculture and river waters, and photocatalytic degradation of antibiotics by TiO2 nanomaterials [J]. Catalysts, 2020, 10(3): 356. doi: 10.3390/catal10030356 [16] 孙慧婧, 李佩纹, 张蓓蓓, 等. 大体积直接进样-超高效液相色谱-三重四极杆质谱法测定水中7大类42种抗生素残留 [J]. 色谱, 2022, 40(4): 333-342. doi: 10.3724/SP.J.1123.2021.08010 SUN H J, LI P W, ZHANG B B, et al. Determination of 42 antibiotic residues in seven categories in water using large volume direct injection by ultra high performance liquid chromatography-triple quadrupole mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(4): 333-342(in Chinese). doi: 10.3724/SP.J.1123.2021.08010
[17] WANG T L, ZHONG M M, LU M L, et al. Development of a high-throughput multi-residue method for analysis of common pesticides in aquatic environments by automated online solid phase extraction coupled with LC-MS/MS [J]. Analytical Methods:Advancing Methods and Applications, 2021, 13(28): 3160-3171. [18] LI T, WANG C, XU Z A, et al. A coupled method of on-line solid phase extraction with the UHPLC-MS/MS for detection of sulfonamides antibiotics residues in aquaculture [J]. Chemosphere, 2020, 254: 126765. doi: 10.1016/j.chemosphere.2020.126765 [19] 中华人民共和国农业部. 绿色食品 鱼: NY/T 842—2012[S]. 北京: 中国农业出版社, 2013. Ministry of Agriculture of the People's Republic of China. Green food. Fish: NY/T 842—2012[S]. Beijing: China Agriculture Press, 2013(in Chinese).
[20] 张秀蓝, 张烃, 董亮, 等. 固相萃取/液相色谱-串联质谱法检测医院废水中21种抗生素药物残留 [J]. 分析测试学报, 2012, 31(4): 453-458. doi: 10.3969/j.issn.1004-4957.2012.04.015 ZHANG X L, ZHANG T, DONG L, et al. Determination of antibiotics in hospital wastewater using HPLC-MS/MS coupled with solid phase extraction [J]. Journal of Instrumental Analysis, 2012, 31(4): 453-458(in Chinese). doi: 10.3969/j.issn.1004-4957.2012.04.015
[21] LUCCI P, NÚÑEZ O. On-line solid-phase extraction for liquid chromatography-mass spectrometry analysis of pesticides [J]. Journal of Separation Science, 2014, 37(20): 2929-2939. doi: 10.1002/jssc.201400531 [22] 孙凯. 洪泽湖湿地典型抗生素污染特征与生态风险[D]. 南京: 南京林业大学, 2015. SUN K. Contamination characteristics and ecological risk assessment of typical antibiotics in the water of the Hongze Lake[D]. Nanjing: Nanjing Forestry University, 2015(in Chinese).
[23] 夏治文, 赵旭远, 顾建忠, 等. 固相环境基质中典型残留抗生素的分析方法综述 [J]. 环境卫生工程, 2019, 27(4): 5-12. doi: 10.3969/j.issn.1005-8206.2019.04.002 XIA Z W, ZHAO X Y, GU J Z, et al. A review on analytical methods for typical antibiotic residues in solid-phase environmental matrix [J]. Environmental Sanitation Engineering, 2019, 27(4): 5-12(in Chinese). doi: 10.3969/j.issn.1005-8206.2019.04.002
[24] 张艺蓓, 岳田利, 乔海鸥, 等. 超高效液相色谱-串联质谱法检测鱼中孔雀石绿、结晶紫及其代谢物 [J]. 食品科学, 2014, 35(10): 179-184. doi: 10.7506/spkx1002-6630-201410034 ZHANG Y B, YUE T L, QIAO H O, et al. Determination of malachite green, crystal violet and their metabolites in fishes by ultra performance liquid chromatography-tandem mass spectrometry [J]. Food Science, 2014, 35(10): 179-184(in Chinese). doi: 10.7506/spkx1002-6630-201410034
[25] 余佩瑶, 陈传胜, 刘寒冰, 等. 固相萃取-高效液相色谱法同时测定鸡粪中四环素类、喹诺酮类和磺胺类抗生素 [J]. 色谱, 2019, 37(5): 518-524. doi: 10.3724/SP.J.1123.2018.11006 YU P Y, CHEN C S, LIU H B, et al. Simultaneous determination of tetracyclines, fluoroquinolones, and sulfonamides in chicken manure using solid-phase extraction and high performance liquid chromatography [J]. Chinese Journal of Chromatography, 2019, 37(5): 518-524(in Chinese). doi: 10.3724/SP.J.1123.2018.11006
[26] 杜鹃, 赵洪霞, 陈景文. 固相萃取-高效液相色谱-串联质谱法同时测定养殖海水中23种抗生素 [J]. 色谱, 2015, 33(4): 348-353. doi: 10.3724/SP.J.1123.2014.09028 DU J, ZHAO H X, CHEN J W. Simultaneous determination of 23 antibiotics in mariculture water using solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(4): 348-353(in Chinese). doi: 10.3724/SP.J.1123.2014.09028
[27] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展 [J]. 环境化学, 2018, 37(7): 1491-1500. doi: 10.7524/j.issn.0254-6108.2017112003 ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China [J]. Environmental Chemistry, 2018, 37(7): 1491-1500(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112003
[28] CRISTALE J, KATSOYIANNIS A, SWEETMAN A J, et al. Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK) [J]. Environmental Pollution, 2013, 179: 194-200. doi: 10.1016/j.envpol.2013.04.001 [29] 丁剑楠, 刘舒娇, 邹杰明, 等. 太湖表层水体典型抗生素时空分布和生态风险评价 [J]. 环境科学, 2021, 42(4): 1811-1819. doi: 10.13227/j.hjkx.202009082 DING J N, LIU S J, ZOU J M, et al. Spatiotemporal distributions and ecological risk assessments of typical antibiotics in surface water of Taihu Lake [J]. Environmental Science, 2021, 42(4): 1811-1819(in Chinese). doi: 10.13227/j.hjkx.202009082
[30] 闭凤丽, 李志广, 刘波, 等. 南方某地区水体抗生素含量及风险评估 [J]. 环境化学, 2018, 37(3): 621-624. BI F L, LI Z G, LIU B, et al. Assessments of ecological and health risk induce by antibiotics in the water of a southern city [J]. Environmental Chemistry, 2018, 37(3): 621-624(in Chinese).
[31] 张国栋. 南四湖流域典型抗生素时空分布及迁移规律研究[D]. 济南: 山东师范大学, 2019. ZHANG G D. Spatial and temporal distribution and migration of typical antibiotics in Nansihu Lake Basin[D]. Jinan: Shandong Normal University, 2019(in Chinese).
[32] 谢全模. 饮用水源地水体中抗生素类的污染特征及其处理工程技术示范: 以东莞市为例[D]. 广州: 华南理工大学, 2020. XIE Q M. Pollution characteristics and treatment engineering technology demonstration of antibiotics in drinking water sources—a case study of Dongguan City[D]. Guangzhou: South China University of Technology, 2020(in Chinese).