-
氮素是农作物生长发育过程中必不可少的营养元素,近年来由于过量施用化肥一方面加剧了硝酸盐淋失,另一方面氮素通过反硝化作用生成N2O、N2释放到大气中,导致氮素利用率下降[1]. 氮素形态转换的本质是氮素在相关微生物功能基因调控下的转化过程,刻画氮循环功能基因与农田氮素利用率间耦合关系,明确主导氮素利用率提升的关键基因种类有利于为进一步开展土壤健康管理和促进农业增产提供科学依据. 现有研究表明,过量施加氮肥会导致土壤中积累的氨通过硝化作用在氨氧化细菌(AOB)的作用下将环境中的氨转化为亚硝酸,而亚硝酸盐氧化细菌(NOB)通过亚硝酸盐氧化还原酶(NXR)将亚硝酸盐氧化为硝酸盐,加剧了土壤酸化[2]. 同时,施肥可以改变土壤nosZ型反硝化细菌基因丰度,并且提高土壤反硝化速率[3-4]. 陈娜等[5]研究发现,增施氮肥可以提升(narG、nosZ)型反硝化功能基因丰度,从而使NO3−、NO2−被还原为N2O、N2释放到大气中,导致农田氮素损失. 研究表明抑制硝化作用功能基因丰度不仅可以缓解氮素以硝酸盐形式流失,还可以促进植株对氮素吸收,从而提升氮素利用率[6]. 综上,研究土壤中氮素的生物化学转化,明确施入土壤的氮素去向进而刻画氮循环功能基因丰度与氮素利用率间的耦合关系可以为减缓农田氮素流失,促进氮素增效提供理论基础.
红黄壤主要分布在我国南方地区,土壤pH为5.25—5.44、降雨量充沛、土壤质地较黏、容重较高. 由于红黄壤本身的性质和当地气候的作用使施入土壤中的氮素通过挥发、淋失、反硝化等进入大气环境以及湖泊河流中[7]. 因此,减少氮素流失,提高农田氮素利用率已成为提高农作物增产增收的的关键所在. 生物质炭和沼液作为典型的土壤改良剂,通过增加土壤有机碳含量为氮循环微生物提供碳源,直接或间接调控氮循环过程相关功能基因丰度和关键环节,从而提高土壤氮素利用效率以及作物产量. 生物质炭是农作物秸秆或动物粪便残渣在厌氧的条件下经过高温热解所产生,具有巨大的比表面积,可以吸附土壤中的营养物质,而且作为肥料的载体,它们还影响着土壤持水性能,可以提高农作物对养分的吸收、改良土壤结构、促使土壤微生物繁殖[8-9]. 沼液作为改善土壤质量的有机物料对氮循环功能基因同样具有显著的调控作用. 由于单独施用沼液易产生氨挥发、硝酸盐淋失和N2O排放等主要环境问题,因此采用生物质炭-沼液联合施用的方式,利用生物质炭吸附和负载氮素,在降低硝酸盐淋失的同时减少N2O排放,提高土壤养分保蓄能力[10-11]. 现有研究发现生物质炭施加到土壤中可以影响硝化作用的限速步骤,促进氨氧化作用的进行,提高氨氧化菌的基因丰度,从而达到促进硝化作用的发生[12]. 而Dempster等[13]的研究则得出生物质炭的施加会对土壤氨氧化作用产生抑制的影响,这可能是由于生物质炭能释放硝化抑制剂,阻碍土壤中铵根离子向硝酸根离子的转化. 而生物质炭对土壤反硝化作用的影响至今仍有不同的观点,刘杰云等[14]研究表明,生物质炭作为土壤改良剂可以显著提高narG、nirK、nosZ基因相对丰度. 王伟等[15]研究发现,通过施加生物质炭可以改善土壤孔隙度,增加了土壤的透气状况,阻碍了厌氧条件下反硝化作用的进行. 施加沼液可以增加土壤微生物的数量,并且沼液的施加也放大了反硝化(nirK、narG)功能基因信号强度、氨化作用(ureC)功能基因信号强度[11].
综上,前人在探讨氮循环功能基因对氮素形态调控以及影响土壤氮素循环过程做了大量研究,为明确氮循环功能基因对农田氮素利用率的影响奠定了基础. 然而,现有研究主要集中在研究功能基因丰度对氮素活化的影响,氮素增效与功能基因间的内在联系仍有待探索[16],其次,目前的研究多采用生物质炭/无机肥料或沼液/无机肥料配施的方式改良土壤,而生物质炭-沼液协同施用的研究手段仍较为少见. 因此,本研究聚焦农田氮素增效的关键问题,从氮循环功能基因角度入手,以浙江省杭州市红黄壤为试验对象,采用生物质炭-沼液联合施用的方式研究了其对土壤肥力因子、氮循环功能基因和氮素利用率的响应特征,刻画氮循环功能基因与氮素利用率间耦合关系,为改善土壤性质,提高氮素利用率以及为缓解因过量施肥而造成的农业污染问题提供理论依据.
生物质炭-沼液联合施用对调控氮循环功能基因促进氮素增效的影响
Effects of combined application of biochar and biogas slurry on regulating nitrogen cycle function genes and promoting nitrogen efficiency
-
摘要: 为探讨生物质炭-沼液配施条件下氮循环功能基因调控农田土壤氮素转化并影响农作物氮素吸收利用机制. 本试验以浙江省杭州市红黄壤作为研究对象,设置生物质炭和沼液两个因素,探究生物质炭-沼液配施条件下土壤基本理化性质和氮循环功能基因丰度变化情况,刻画功能基因与农田氮素利用率间的耦合关系. 结果表明,生物质炭-沼液配施可以显著降低土壤容重,提升土壤pH和土壤氮素含量,其中,高剂量生物质炭-沼液配施(C3B2)处理较单施化肥(C0B0)处理铵态氮、硝态氮、全氮含量增幅均达到显著水平(P<0.05). 与空白处理(CK)相比,生物质炭-沼液配施(C3B2)处理则显著提高了反硝化功能基因丰度,较单施化肥(C0B0)处理增幅30.98%和44.99%. 冗余分析结果显示,铵态氮、硝态氮和有机碳含量对土壤氮循环功能基因影响较为显著,结构方程模型则表明硝化作用功能基因丰度的提升对包菜氮素农学利用率呈现负相关趋势. 研究结果表明,在相同养分施用量的条件下,生物质炭-沼液配施可显著提高土壤肥力. 氮素和有机碳含量是影响功能基因丰度的关键因素,硝化作用功能基因丰度的降低可以提高农田氮素利用率. 本研究结果可以为促进农业废弃物资源化利用,提升农田土壤氮素活性提供理论依据.Abstract: The objective of this study was to investigate the mechanism of nitrogen cycling function genes regulating soil nitrogen transformation and affecting crop nitrogen uptake and utilization under combined application of biochar and biogas slurry. In this study, red yellow soil was used as the research subject in Hangzhou, Zhejiang Province. The changes of soil basic physicochemical properties and nitrogen cycling gene abundance as well as the correlation between functional genes and nitrogen use efficiency were explored under the combined application of biogas slurry and biochar. The results were as follow: the combined application of biochar and biogas slurry could significantly reduce soil bulk density, increase soil pH and soil nitrogen content, among which, the contents of ammonium nitrogen, nitrate nitrogen and total nitrogen in the combined application of biochar and biogas slurry (C3B2) increased significantly compared with that in the single application of chemical fertilizer (C0B0) (P<0.05). The C3B2 treatment significantly increased the abundance of denitrifying functional genes by 30.98% and 44.99%, respectively, compared with (CK) and (C0B0) treatments. The results of redundancy analysis showed that the contents of NH4+-N, NO3−-N and organic carbon had significant effects on soil nitrogen cycling functional genes, while the structural equation model showed that the increase of the abundance of nitrification functional genes had a negative correlation with the nitrogen agronomic efficiency of cabbage. The results showed that under the same nutrient application rate, the combined application of biochar and biogas slurry could significantly improve soil fertility. The nitrogen and organic carbon contents were the key factors affecting the abundance of functional genes, the decrease of nitrification gene abundance could improve nitrogen use efficiency. The results of this study can provide a theoretical basis for promoting the resource utilization of agricultural waste and improving the activity of nitrogen in farmland soil.
-
Key words:
- biocher /
- biogas slurry /
- nitrogen cycling function gene /
- nitrogen use efficiency.
-
表 1 试验设计方案
Table 1. Test design scheme
处理
Treatment生物质炭a/%
Biocher沼液b/%
Biogas slurry处理
Treatment生物质炭/%
Biocher沼液/%
Biogas slurry处理
Treatment生物质炭/%
Biocher沼液/%
Biogas slurryC0B0 0 0 C0B1 0 50 C0B2 0 100 C1B0 0.5 0 C1B1 0.5 50 C1B2 0.5 100 C2B0 1 0 C2B1 1 50 C2B2 1 100 C3B0 2 0 C3B1 2 50 C3B2 2 100 a代表生物质炭占小区耕层土壤总重比,b代表所施沼液全氮量占施氮总量比. 根据本项目小区面积和沼液全氮含量,0%生物质炭施用量为0 kg,0.5%生物质炭施用量为13.5 kg,1%生物质炭施用量为27 kg,2%生物质炭施用量为54 kg,0%沼液施用量为0 L,50%沼液施用量为22.7 L,100%沼液施用量为45.4 L.
The percentage of biocher application represents the percentage of the total weight of residential tillage soil; the percentage of biogas slurry application represents the percentage of total biogas slurry applied for the total nitrogen applied. According to the residential area and total nitrogen content of biogas slurry, The application amount of 0% biochar was 0 kg, The application amount of 0.5% biochar was 13.5 kg, The application amount of 1% biochar was 27 kg, The application amount of 2% biochar was 54 kg, 0% biogas slurry application amount was 0 L, 50% biogas slurry application amount was 22.7 L and 100% biogas slurry application amount was 45.4 L.表 2 功能基因PCR扩增引物
Table 2. Primers for PCR amplification of functional genes
目标基因
Target gene引物
Primer引物序列(5'-3')
Primer sequencesamoA-A Arch-amoAF
Arch-amoARSTAATGGTCTGGCTTAGACG
GCGGCCATCCATCTGTATGTamoA-B amoA-1F
amoA-2RGGGGTTTCTACTGGTGGT
CCCCTCKGSAAAGCCTTCTTCnxrA F1370F
F2843RCAGACCGACGTGTGCGAAAG
TCCACAAGGAACGGAAGGTCnarG narG 1960F
narG 2650RTAYGTSGGCCARGARAA
TTYTCRTACCABGTBGCnirS Cd3Af
R3cdGTSAACGTSAAGGARACSGG
GASTTCGGRTGSGTCTTGAnirK F1aCu
R3CuATCATGGTSCTGCCGCG
GCCTCGATCAGRTTGTGGTTnosZ nosZF
nosZ1662RCGYTGTTCMTCGACAGCCAG
CGSACCTTSTTGCCSTYGCGnapA napAV67F
napAV67RTAYTTYYTNHSNAARATHATGTAYGG
DATNGGRTGCATYTCNGCCATRTT表 3 不同生物质炭和沼液处理下土壤理化性质
Table 3. The physicochemical properties of the soil under different biocher and biogas slurry treatments
处理
TrentmentpH 容重/(g·cm-3)
SBD硝态氮/(mg·kg−1)
NO3--N铵态氮/(mg·kg−1)
NH4+-N全氮/(g·kg−1)
Total N有机碳/(g·kg−1)
Organic CarbonB0 CK 5.31±0.16c 1.45±0.01a 3.54±0.74c 0.79±0.10d 0.6±0.01c 4.82±0.97d C0 5.15±0.17c 1.43±0.01ab 4.13±1.37c 2.37±0.52c 0.5±0.01c 4.33±0.64d C1 6.28±2.8b 1.25±0.01c 8.68±1.33b 3.40±0.58c 1.4±0.03b 11.48±1.18c C2 7.15±0.34b 1.41±0.02ab 14.78±2.07a 7.44±0.97b 1.9±0.06b 15.87±2.08b C3 7.49±0.1a 1.36±0.01b 15.02±1.25a 15.72±1.13a 4.5±0.04a 22.44±0.90a B1 CK 5.31±0.09c 1.45±0.01a 3.54±0.23c 0.79±0.10d 0.6±0.02c 4.82±0.97d C0 5.31±0.07c 1.49±0.01a 4.58±0.07c 3.39±0.10c 0.5±0.01c 4.34±0.33d C1 7.14±0.20b 1.28±0.02b 3.51±0.02c 4.11±0.24c 1.3±0.00b 11.92±1.15c C2 7.35±0.06ab 1.43±0.06b 16.24±5.75b 11.16±1.46b 2.3±0.006a 17.78±1.05a C3 7.39±0.23a 1.42±0.06b 28.34±1.19a 18.66±0.61a 2.2±0.016a 14.22±0.59b B2 CK 5.31±0.09b 1.45±0.01ab 3.54±0.72d 0.79±0.10d 0.6±0.02d 4.82±0.97d C0 5.17±0.09b 1.47±0.02a 4.37±0.93d 4.04±0.81c 0.9±0.06cd 4.16±0.19d C1 7.38±0.04a 1.29±0.01c 8.02±0.86c 4.88±0.46c 1.7±0.05bc 10.03±1.77c C2 7.37±0.16a 1.45±0.04ab 15±0.51b 13.54±1.22b 2.7±0.04b 13.71±1.20b C3 7.46±0.05a 1.36±0.02bc 27.9±1.8a 19.46±1.00a 5.2±0.09a 23.05±0.28a 表中不同处理同列数据后不同小写字母表示各处理间差异显著(P<0.05)
Different lowercase letters after different processing of the same column in the table indicate significant differences between treatments (P<0.05) -
[1] 董达, 王宇婕, 姜培坤, 等. 炭基肥和竹炭对土壤氮素淋失和微生物的影响 [J]. 水土保持学报, 2021, 35(2): 144-151. doi: 10.13870/j.cnki.stbcxb.2021.02.020 DONG D, WANG Y J, JIANG P K, et al. Effects of carbon based fertilizer and bamboo charcoal on soil nitrogen loss and microorganism [J]. Journal of Soil and Water Conservation, 2021, 35(2): 144-151(in Chinese). doi: 10.13870/j.cnki.stbcxb.2021.02.020
[2] 虞璐. 生物质炭对酸化土壤的改良效应及其对土壤硝化作用的影响[D]. 杭州: 浙江大学, 2019. YU L. The effect of biochar on acidic soil amelioration and soil nitrification[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
[3] 孟阳阳, 刘冰, 康建军. 不同水肥措施对甜高粱农田土壤呼吸和硝化-反硝化作用的影响 [J]. 甘肃农业大学学报, 2020, 55(6): 67-76. doi: 10.13432/j.cnki.jgsau.2020.06.009 MENG Y Y, LIU B, KANG J J. Effects of different irrigation and fertilizer application on soil respiration and nitrification-denitrification in sweet Sorghum farmland [J]. Journal of Gansu Agricultural University, 2020, 55(6): 67-76(in Chinese). doi: 10.13432/j.cnki.jgsau.2020.06.009
[4] 赵永鹏. 耕作和施肥对水稻土厌氧氨氧化和反硝化速率的影响[D]. 重庆: 西南大学, 2017. ZHAO Y P. Effects of tillage and fertilization on anammox and denitrification rates in paddy soils[D]. Chongqing: Southwest University, 2017(in Chinese).
[5] 陈娜, 刘毅, 黎娟, 等. 长期施肥对稻田不同土层反硝化细菌丰度的影响 [J]. 中国环境科学, 2019, 39(5): 2154-2160. doi: 10.3969/j.issn.1000-6923.2019.05.044 CHEN N, LIU Y, LI J, et al. Effects of long-term fertilization on the abundance of the key denitrifiers in profile of paddy soil profiles [J]. China Environmental Science, 2019, 39(5): 2154-2160(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.044
[6] 刘发波, 马笑, 张芬, 等. 硝化抑制剂对我国蔬菜生产产量、氮肥利用率和氧化亚氮减排效应的影响: Meta分析 [J]. 环境科学, 2022, 43(2): 5140-5148. LIU F B, MA X, ZHANG F, et al. Impact of nitrification inhibitors on vegetable production yield nitrogen fertilizer use efficiency and nitrous oxide emission reduction in China: Meta Analysis [J]. Environmental Science, 2022, 43(2): 5140-5148(in Chinese).
[7] 王利民, 林新坚, 黄东风, 等. 红黄壤茶园不同培肥模式的土壤理化效应 [J]. 东北林业大学学报, 2012, 40(1): 54-57,65. doi: 10.3969/j.issn.1000-5382.2012.01.013 WANG L M, LIN X J, HUANG D F, et al. Effect of different fertilization patterns on physicochemical properties of red-yellow soil in tea garden [J]. Journal of Northeast Forestry University, 2012, 40(1): 54-57,65(in Chinese). doi: 10.3969/j.issn.1000-5382.2012.01.013
[8] 李力, 刘娅, 陆宇超, 等. 生物炭的环境效应及其应用的研究进展 [J]. 环境化学, 2011, 30(8): 1411-1421. LI L, LIU Y, LU Y C, et al. Review on environmental effects and applications of biochar [J]. Environmental Chemistry, 2011, 30(8): 1411-1421(in Chinese).
[9] 简秀梅, 陈学濡, 刘富豪, 等. 不同灰分生物质炭对红壤理化特性与微生物特性的影响 [J]. 农业机械学报, 2020, 51(6): 282-291. doi: 10.6041/j.issn.1000-1298.2020.06.030 JIAN X M, CHEN X R, LIU F H, et al. Effects of biochars with various ash contents on physiochemical properties and microbial community quantity and activity in red soils [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 282-291(in Chinese). doi: 10.6041/j.issn.1000-1298.2020.06.030
[10] 杨润. 沼液对水稻产量、氮素利用、氨挥发的影响及氨挥发减缓措施探讨[D]. 南京: 南京农业大学, 2017. YANG R. Effects of biogas slurry on rice yield, nitrogen use efficiency and ammonia volatilization, and the discussion on measures for ammonia volatilization reduction[D]. Nanjing: Nanjing Agricultural University, 2017(in Chinese).
[11] REN T T, YU X Y, LIAO J H, et al. Application of biogas slurry rather than biochar increases soil microbial functional gene signal intensity and diversity in a poplar plantation [J]. Soil Biology and Biochemistry, 2020, 146: 107825. doi: 10.1016/j.soilbio.2020.107825 [12] 潘逸凡. 生物质炭对稻田土壤氨氧化微生物的影响研究[D]. 杭州: 浙江大学, 2014. PAN Y F. Influence of biochar on ammonia oxidation microbial community in paddy soil[D]. Hangzhou: Zhejiang University, 2014(in Chinese).
[13] DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil [J]. Plant and Soil, 2012, 354(1/2): 311-324. [14] 刘杰云, 邱虎森, 王聪, 等. 生物质炭对双季稻田土壤反硝化功能微生物的影响 [J]. 环境科学, 2019, 40(5): 2394-2403. doi: 10.13227/j.hjkx.201810182 LIU J Y, QIU H S, WANG C, et al. Influence of biochar amendment on soil denitrifying microorganisms in double rice cropping system [J]. Environmental Science, 2019, 40(5): 2394-2403(in Chinese). doi: 10.13227/j.hjkx.201810182
[15] 王伟, 白军红, 张玲, 等. 基于Cite Space的生物质炭对土壤氮循环影响的文献计量分析 [J]. 北京师范大学学报(自然科学版), 2021, 57(1): 76-85. WANG W, BAI J H, ZHANG L, et al. Biochar modulation of the soil nitrogen cycle: A Cite Space-based bibliometric study [J]. Journal of Beijing Normal University (Natural Science), 2021, 57(1): 76-85(in Chinese).
[16] 潘逸凡, 杨敏, 董达, 等. 生物质炭对土壤氮素循环的影响及其机理研究进展 [J]. 应用生态学报, 2013, 24(9): 2666-2673. doi: 10.13287/j.1001-9332.2013.0518 PAN Y F, YANG M, DONG D, et al. Effects of biochar on soil nitrogen cycle and related mechanisms: a review [J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2666-2673(in Chinese). doi: 10.13287/j.1001-9332.2013.0518
[17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU R K. Methods for soil agrochemical analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000(in Chinese).
[18] YANG X L, LU Y L, DING Y, et al. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014) [J]. Field Crops Research, 2017, 206: 1-10. doi: 10.1016/j.fcr.2017.02.016 [19] 储成, 吴赵越, 黄欠如, 等. 有机质提升对酸性红壤氮循环功能基因及功能微生物的影响 [J]. 环境科学, 2020, 41(5): 2468-2475. doi: 10.13227/j.hjkx.201911013 CHU C, WU Z Y, HUANG Q R, et al. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils [J]. Environmental Science, 2020, 41(5): 2468-2475(in Chinese). doi: 10.13227/j.hjkx.201911013
[20] 董心亮, 林启美. 生物质炭对土壤物理性质影响的研究进展 [J]. 中国生态农业学报, 2018, 26(12): 1846-1854. doi: 10.13930/j.cnki.cjea.180277 DONG X L, LIN Q M. Biochar effect on soil physical properties: A review [J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1846-1854(in Chinese). doi: 10.13930/j.cnki.cjea.180277
[21] ESMAEELNEJAD L, SHORAFA M, GORJI M, et al. Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: An incubation study [J]. Communications in Soil Science and Plant Analysis, 2017, 48(14): 1710-1718. doi: 10.1080/00103624.2017.1383414 [22] 万辰, 马瑛骏, 张克强, 等. 洱海流域不同有机肥替代对土壤理化性质及油菜产量的影响 [J]. 农业环境科学学报, 2021, 40(11): 2494-2502. doi: 10.11654/jaes.2021-1026 WAN C, MA Y J, ZHANG K Q, et al. Effects of different organic fertilizer substitutions on soil physical and chemical properties and rapeseed yield in erhai lake basin, China [J]. Journal of Agro-Environment Science, 2021, 40(11): 2494-2502(in Chinese). doi: 10.11654/jaes.2021-1026
[23] CLOUGH T J, BERTRAM J E, RAY J L, et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil [J]. Soil Science Society of America Journal, 2010, 74(3): 852-860. doi: 10.2136/sssaj2009.0185 [24] JIN Z J, LI L Q, LIU X Y, et al. Impact of long-term fertilization on community structure of ammonia oxidizing and denitrifying bacteria based on amoa and nirk genes in a rice paddy from tai lake region, China [J]. Journal of Integrative Agriculture, 2014, 13(10): 2286-2298. doi: 10.1016/S2095-3119(14)60784-X [25] 周慧芳. 农田土壤厌氧氨氧化及其在氮循环中影响的研究[D]. 杭州: 浙江大学, 2018. ZHOU H F. Study on anammox of farmland soil and its effects on nitrogen cycling[D]. Hangzhou: Zhejiang University, 2018(In Chinese).
[26] MURASE J, HIDA A, OGAWA K, et al. Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil [J]. Soil Biology and Biochemistry, 2015, 80: 237-243. doi: 10.1016/j.soilbio.2014.10.015 [27] 赵伟, 王宏燕, 王大庆, 等. 农肥和化肥对东北黑土土壤氮素转化作用的研究 [J]. 水土保持学报, 2009, 23(2): 99-102,108. doi: 10.3321/j.issn:1009-2242.2009.02.022 ZHAO W, WANG H Y, WANG D Q, et al. Effects of manure and chemical fertilizers application on nitrogen transfer in black soil [J]. Journal of Soil and Water Conservation, 2009, 23(2): 99-102,108(in Chinese). doi: 10.3321/j.issn:1009-2242.2009.02.022
[28] 马龙, 高伟, 栾好安, 等. 有机肥/秸秆替代化肥模式对设施菜田土壤氮循环功能基因丰度的影响 [J]. 植物营养与肥料学报, 2021, 27(10): 1767-1778. doi: 10.11674/zwyf.2021136 MA L, GAO W, LUAN H A, et al. Effects of partial substitution of chemical fertilizer with manure and/or straw on the abundance of functional genes related to soil N-cycling [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1767-1778(in Chinese). doi: 10.11674/zwyf.2021136
[29] 郭俊杰, 朱晨, 刘文波, 等. 不同施肥模式对土壤氮循环功能微生物的影响 [J]. 植物营养与肥料学报, 2021, 27(5): 751-759. doi: 10.11674/zwyf.20504 GUO J J, ZHU C, LIU W B, et al. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 751-759(in Chinese). doi: 10.11674/zwyf.20504