基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估

卢志磊, 范勇杰, 陈洁洁, 杨婧, 吴春山, 孙启元. 基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估[J]. 环境化学, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002
引用本文: 卢志磊, 范勇杰, 陈洁洁, 杨婧, 吴春山, 孙启元. 基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估[J]. 环境化学, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002
LU Zhilei, FAN Yongjie, CHEN Jiejie, YANG Jing, WU Chunshan, SUN Qiyuan. Product prediction and toxicity assessment of halogen-containing flame retardants degraded by UV/hypochlorous acid systems based on Gaussian and ECOSAR models[J]. Environmental Chemistry, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002
Citation: LU Zhilei, FAN Yongjie, CHEN Jiejie, YANG Jing, WU Chunshan, SUN Qiyuan. Product prediction and toxicity assessment of halogen-containing flame retardants degraded by UV/hypochlorous acid systems based on Gaussian and ECOSAR models[J]. Environmental Chemistry, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002

基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估

    通讯作者: E-mail: minglei_2008@fjnu.edu.cn
  • 基金项目:
    国家自然科学基金(52070044)和福建省自然科学基金(2021J06022)资助.

Product prediction and toxicity assessment of halogen-containing flame retardants degraded by UV/hypochlorous acid systems based on Gaussian and ECOSAR models

    Corresponding author: SUN Qiyuan, minglei_2008@fjnu.edu.cn
  • Fund Project: National Natural Science Foundation of China (52070044) and Natural Science Foundation of Fujian Province (2021J06022).
  • 摘要: 含卤阻燃剂广泛应用于各类电子产品的生产,难降解且具有生物毒性. 在生产和使用过程中,部分含卤阻燃剂会残留在水体并排放到水环境造成累积污染,威胁水环境安全,亟需探寻有效的降解去毒方法. 本研究通过Gaussian与ECOSAR模型预测了四氯双酚A (TCBPA)、四溴双酚A (TBBPA)、十溴二苯乙烷 (DBDPE) 等3种典型含卤阻燃剂在紫外/次氯酸 (UV/Cl)体系中的光催氧化降解路径与产物毒性. 结果表明, UV/Cl体系中的含氯自由基 (RCS) 与羟基自由基 (·OH) 易攻击阻燃剂分子结构上键能较低、Fukui指数较高的位点,促使C—Cl键、C—Br键、C—C键等因为受到攻击而断裂,进而降解阻燃剂. 同时,利用ECOSAR模型评估发现降解产物的急性毒性LC50-96 h均低于100 mg·L−1,佐证了UV/Cl体系对含卤阻燃剂降解的有效性,并降低其环境危害. 因此,采用Gaussian计算、ECOSAR模型相结合的分析方法,能够更加便捷地预测阻燃剂降解路径与产物毒性特征,为深入揭示UV/Cl体系光催氧化降解含卤阻燃剂机理提供新思路.
  • 加载中
  • 图 1  UV/Cl体系下四氯双酚A(TCBPA)(A)、四溴双酚A(TBBPA)(B)和十溴二苯乙烷(DBDPE)(C)降解路径分析

    Figure 1.  Degradation path analysis of TCBPA(A), TBBPA(B) and DBDPE(C) under UV/Cl system

    图 2  四氯双酚A(TCBPA)(A)、四溴双酚A(TBBPA)(B)和十溴二苯乙烷(DBDPE)(C)在UV/Cl体系下降解产物的毒性

    Figure 2.  TCBPA(A), TBBPA(B) and DBDPE(C) reduce the toxicity of the despolyte in UV/Cl systems

    表 1  各阻燃剂不同点位键能分布

    Table 1.  Different point bond energy distribution of each flame retardant


    位点
    Sites
    键能/(kJ·mol−1
    Bond energy
    四氯双酚A5C-13Cl256.0496
    8C-15Cl256.0496
    1C-14Cl261.7385
    10C-16Cl261.7385
    19C-21C
    273.4115
    19C-20C273.4115
    3C-19C329.8949
    12C-19C329.8952
    17O-26H364.9065
    18O-27H364.9082
    20C-30H450.0166
    20C-28H
    450.0167
    21C-33H450.0167
    21C-31H450.0168
    20C-29H450.0169
    21C-32H450.0169
    6C-17O454.1277
    2C-22H496.3993
    11C-25H496.3993
    4C-23H500.8255
    7C-24H500.9393
    9C-18O527.4504
    四溴双酚A9C-11C272.2355
    9C-10C272.6038
    9C-12C331.2436
    6C-9C331.2438
    14C-21Br343.9736
    4C-18Br345.0387
    8C-19Br351.9484
    16C-20Br352.7075
    1O-22H366.4833
    2O-23H366.8199
    11C-29H449.7797
    11C-30H449.7797
    11C-31H449.7797
    10C-26H449.9446
    10C-27H449.9446
    10C-28H449.9446
    15C-1O461.6979
    3C-2O461.9418
    17C-33H494.5618
    5C-24H495.2022
    7C-25H498.5851
    13C-32H499.4345
    十溴二苯乙烷1C-2C258.8407

    6C-11Br318.5690
    17C-22Br318.5690
    7C-10Br320.1635
    16C-23Br320.1635
    5C-12Br321.4881
    18C-21Br321.4881
    4C-13Br321.5290
    19C-20Br321.5290
    8C-9Br322.8489
    15C-24Br322.8489
    1C-25H407.1854
    2C-27H407.1854
    2C-28H407.1854
    1C-26H407.1857
    1C-14C433.1090
    2C-3C433.1090

    位点
    Sites
    键能/(kJ·mol−1
    Bond energy
    四氯双酚A5C-13Cl256.0496
    8C-15Cl256.0496
    1C-14Cl261.7385
    10C-16Cl261.7385
    19C-21C
    273.4115
    19C-20C273.4115
    3C-19C329.8949
    12C-19C329.8952
    17O-26H364.9065
    18O-27H364.9082
    20C-30H450.0166
    20C-28H
    450.0167
    21C-33H450.0167
    21C-31H450.0168
    20C-29H450.0169
    21C-32H450.0169
    6C-17O454.1277
    2C-22H496.3993
    11C-25H496.3993
    4C-23H500.8255
    7C-24H500.9393
    9C-18O527.4504
    四溴双酚A9C-11C272.2355
    9C-10C272.6038
    9C-12C331.2436
    6C-9C331.2438
    14C-21Br343.9736
    4C-18Br345.0387
    8C-19Br351.9484
    16C-20Br352.7075
    1O-22H366.4833
    2O-23H366.8199
    11C-29H449.7797
    11C-30H449.7797
    11C-31H449.7797
    10C-26H449.9446
    10C-27H449.9446
    10C-28H449.9446
    15C-1O461.6979
    3C-2O461.9418
    17C-33H494.5618
    5C-24H495.2022
    7C-25H498.5851
    13C-32H499.4345
    十溴二苯乙烷1C-2C258.8407

    6C-11Br318.5690
    17C-22Br318.5690
    7C-10Br320.1635
    16C-23Br320.1635
    5C-12Br321.4881
    18C-21Br321.4881
    4C-13Br321.5290
    19C-20Br321.5290
    8C-9Br322.8489
    15C-24Br322.8489
    1C-25H407.1854
    2C-27H407.1854
    2C-28H407.1854
    1C-26H407.1857
    1C-14C433.1090
    2C-3C433.1090
    下载: 导出CSV

    表 2  四溴双酚A不同点位Fukui指数

    Table 2.  Fukui index at different points of tetrabromobisphenol A

    原子
    Atom
    序号
    Serial number
    q(N)q (N+1)q (N-1)ff+
    Br18−0.0369−0.15570.07950.11640.1188
    Br20−0.0259−0.18630.0630.08890.1604
    Br21−0.0338−0.14130.04760.08140.1075
    Br19−0.0224−0.16740.04790.07030.145
    O1−0.1869−0.2114−0.12510.06180.0246
    O2−0.1872−0.2116−0.12540.06180.0244
    C30.06820.04990.11250.04420.0183
    C150.06820.04930.11190.04370.019
    C60.0004−0.00940.03790.03750.0098
    C120.0006−0.00960.03740.03670.0102
    C4−0.0079−0.03640.02460.03250.0285
    C16−0.0147−0.0540.01270.02740.0392
    C7−0.0447−0.065−0.01790.02680.0203
    C17−0.0489−0.0692−0.0260.0230.0202
    C14−0.0055−0.02970.01240.01790.0242
    C5−0.0457−0.067−0.02870.0170.0213
    C13−0.0417−0.065−0.0260.01570.0233
    C8−0.0115−0.04510.00390.01540.0336
    C10−0.0826−0.0885−0.07280.00980.0059
    C11−0.0833−0.0887−0.07350.00970.0054
    C90.03040.02710.03330.00290.0033
    原子
    Atom
    序号
    Serial number
    q(N)q (N+1)q (N-1)ff+
    Br18−0.0369−0.15570.07950.11640.1188
    Br20−0.0259−0.18630.0630.08890.1604
    Br21−0.0338−0.14130.04760.08140.1075
    Br19−0.0224−0.16740.04790.07030.145
    O1−0.1869−0.2114−0.12510.06180.0246
    O2−0.1872−0.2116−0.12540.06180.0244
    C30.06820.04990.11250.04420.0183
    C150.06820.04930.11190.04370.019
    C60.0004−0.00940.03790.03750.0098
    C120.0006−0.00960.03740.03670.0102
    C4−0.0079−0.03640.02460.03250.0285
    C16−0.0147−0.0540.01270.02740.0392
    C7−0.0447−0.065−0.01790.02680.0203
    C17−0.0489−0.0692−0.0260.0230.0202
    C14−0.0055−0.02970.01240.01790.0242
    C5−0.0457−0.067−0.02870.0170.0213
    C13−0.0417−0.065−0.0260.01570.0233
    C8−0.0115−0.04510.00390.01540.0336
    C10−0.0826−0.0885−0.07280.00980.0059
    C11−0.0833−0.0887−0.07350.00970.0054
    C90.03040.02710.03330.00290.0033
    下载: 导出CSV

    表 3  四氯双酚A不同点位Fukui指数

    Table 3.  Fukui index at different points of tetrachlorobisphenol A

    原子
    Atom
    序号
    Serial number
    q (N)q (N+1)q (N-1)ff+
    Cl14−0.0648−0.20850.01180.07650.1437
    Cl16−0.0648−0.20840.01180.07650.1436
    Cl13−0.0652−0.16240.00330.06850.0972
    Cl15−0.0652−0.16230.00330.06850.0971
    O18−0.1842−0.2135−0.11660.06760.0294
    O17−0.1842−0.2135−0.11660.06760.0293
    C90.06950.04230.11670.04720.0273
    C60.06950.04230.11670.04720.0272
    C30.0015−0.01440.04260.04110.0159
    C120.0015−0.01450.04260.04110.0159
    C10.0086−0.02910.04070.03210.0377
    C100.0086−0.02910.04070.03210.0377
    C2−0.0481−0.072−0.02220.0260.0239
    C11−0.0481−0.0719−0.02220.0260.0238
    C50.0195−0.00630.04130.02190.0258
    C80.0195−0.00630.04130.02190.0258
    C7−0.0421−0.0598−0.02250.01950.0177
    C4−0.0421−0.0597−0.02260.01950.0176
    C20−0.0828−0.0884−0.07230.01060.0055
    C21−0.0828−0.0884−0.07230.01060.0055
    C190.03060.0260.03390.00330.0046
    原子
    Atom
    序号
    Serial number
    q (N)q (N+1)q (N-1)ff+
    Cl14−0.0648−0.20850.01180.07650.1437
    Cl16−0.0648−0.20840.01180.07650.1436
    Cl13−0.0652−0.16240.00330.06850.0972
    Cl15−0.0652−0.16230.00330.06850.0971
    O18−0.1842−0.2135−0.11660.06760.0294
    O17−0.1842−0.2135−0.11660.06760.0293
    C90.06950.04230.11670.04720.0273
    C60.06950.04230.11670.04720.0272
    C30.0015−0.01440.04260.04110.0159
    C120.0015−0.01450.04260.04110.0159
    C10.0086−0.02910.04070.03210.0377
    C100.0086−0.02910.04070.03210.0377
    C2−0.0481−0.072−0.02220.0260.0239
    C11−0.0481−0.0719−0.02220.0260.0238
    C50.0195−0.00630.04130.02190.0258
    C80.0195−0.00630.04130.02190.0258
    C7−0.0421−0.0598−0.02250.01950.0177
    C4−0.0421−0.0597−0.02260.01950.0176
    C20−0.0828−0.0884−0.07230.01060.0055
    C21−0.0828−0.0884−0.07230.01060.0055
    C190.03060.0260.03390.00330.0046
    下载: 导出CSV

    表 4  十溴二苯乙烷不同点位Fukui指数

    Table 4.  Fukui index of decabromodiphenylethane at different points

    原子
    Atom
    序号
    Serial number
    q (N)q (N+1)q (N-1)ff+
    Br12−0.0037−0.08930.09720.10090.0856
    Br21−0.0037−0.08930.09720.10090.0856
    Br90.0079−0.05470.09870.09090.0626
    Br240.0079−0.05470.09870.09080.0626
    Br10−0.0042−0.08740.07980.08410.0831
    Br23−0.0042−0.08740.07990.08410.0831
    Br130.0122−0.05450.07410.06190.0667
    Br200.0122−0.05450.07410.06190.0666
    Br11−0.0016−0.10350.05370.05540.1018
    Br22−0.0016−0.10350.05370.05540.1018
    C5−0.0054−0.02190.02040.02580.0165
    C18−0.0054−0.02190.02040.02580.0165
    C80.004−0.00860.02650.02250.0127
    C150.004−0.00860.02650.02250.0127
    C7−0.0052−0.02120.01310.01840.016
    C16−0.0052−0.02120.01310.01840.016
    C40.0037−0.00990.02190.01820.0136
    C190.0037−0.00990.02190.01820.0136
    C6−0.0037−0.0220.00360.00720.0183
    C17−0.0037−0.0220.00360.00720.0183
    C30.0059−0.00170.01090.00490.0076
    C140.0059−0.00170.01080.00490.0076
    C1−0.056−0.0611−0.05410.00190.0051
    C2−0.056−0.0611−0.05420.00190.0051
    原子
    Atom
    序号
    Serial number
    q (N)q (N+1)q (N-1)ff+
    Br12−0.0037−0.08930.09720.10090.0856
    Br21−0.0037−0.08930.09720.10090.0856
    Br90.0079−0.05470.09870.09090.0626
    Br240.0079−0.05470.09870.09080.0626
    Br10−0.0042−0.08740.07980.08410.0831
    Br23−0.0042−0.08740.07990.08410.0831
    Br130.0122−0.05450.07410.06190.0667
    Br200.0122−0.05450.07410.06190.0666
    Br11−0.0016−0.10350.05370.05540.1018
    Br22−0.0016−0.10350.05370.05540.1018
    C5−0.0054−0.02190.02040.02580.0165
    C18−0.0054−0.02190.02040.02580.0165
    C80.004−0.00860.02650.02250.0127
    C150.004−0.00860.02650.02250.0127
    C7−0.0052−0.02120.01310.01840.016
    C16−0.0052−0.02120.01310.01840.016
    C40.0037−0.00990.02190.01820.0136
    C190.0037−0.00990.02190.01820.0136
    C6−0.0037−0.0220.00360.00720.0183
    C17−0.0037−0.0220.00360.00720.0183
    C30.0059−0.00170.01090.00490.0076
    C140.0059−0.00170.01080.00490.0076
    C1−0.056−0.0611−0.05410.00190.0051
    C2−0.056−0.0611−0.05420.00190.0051
    下载: 导出CSV
  • [1] 朱冰清, 史薇, 胡冠九,等. 中国海洋环境中卤代阻燃剂的污染现状与研究进展 [J]. 环境化学, 2017, 36(11): 2408-2423. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2017032702

    ZHU B Q, SHI W, HU G J et al. The pollution status and research progress on halogenated flame retardants in China marine environment [J]. Environmental Chemistry, 2017, 36(11): 2408-2423(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2017032702

    [2] 童艺, 程伊雪, 吴冠履, 等. 新型溴系阻燃剂环境污染现状研究进展 [J]. 环境化学, 2021, 40(1): 83-101. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020042501

    TONG Y, CHENG Y X, WU G Y, et al. Current research progress on environmental pollution of novel brominated flame retardant [J]. Environmental Chemistry, 2021, 40(1): 83-101(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020042501

    [3] LIU W T, PAN Y F, YANG L, et al. Developmental toxicity of TCBPA on the nervous and cardiovascular systems of zebrafish (Danio rerio): A combination of transcriptomic and metabolomics [J]. Journal of Environmental Sciences, 2023, 127: 197-209. doi: 10.1016/j.jes.2022.04.022
    [4] WANG S T, LI W L, CHEN Y Y, et al. Toxicity evaluation of decabromodiphenyl ethane (DBDPE) to Pleurotus ostreatus: Oxidative stress, morphology and transcriptomics [J]. Journal of Hazardous Materials, 2022, 431: 128625. doi: 10.1016/j.jhazmat.2022.128625
    [5] YAO Y R, YIN L, HE C, et al. Removal kinetics and mechanisms of tetrabromobisphenol A (TBBPA) by HA-n-FeS colloids in the absence and presence of oxygen [J]. Journal of Environmental Management, 2022, 311: 114885. doi: 10.1016/j.jenvman.2022.114885
    [6] 朱婧文, 耿存珍, 张丽珠, 等. 溴系阻燃剂的环境毒理学研究进展 [J]. 环境科技, 2012, 25(5): 62-67.

    ZHU J W, GENG C Z, ZHANG L Z, et al. Progress on environmental toxicology of brominated flame retardants [J]. Environmental Science and Technology, 2012, 25(5): 62-67(in Chinese).

    [7] 高玉娟, 谢承劼, 余红, 等. 溴代阻燃剂在土壤中的迁移转化研究进展 [J]. 环境科学研究, 2021, 34(2): 479-490.

    GAO Y J, XIE C J, YU H, et al. Research progress on migration and transformation of brominated flame retardants in soil [J]. Research of Environmental Sciences, 2021, 34(2): 479-490(in Chinese).

    [8] 徐建林, 王涛, 康成虎, 等. 阻燃剂研究与应用进展及问题思考 [J]. 材料导报, 2022, 36(10): 235-243.

    XU J L, WANG T, KANG C H, et al. Research and applications of flame retardants: A review and thoughts [J]. Materials Reports, 2022, 36(10): 235-243(in Chinese).

    [9] 王爽, 路珍, 李斐, 等. 典型溴系阻燃剂四溴双酚A和十溴二苯乙烷的污染现状及毒理学研究进展 [J]. 生态毒理学报, 2020, 15(6): 24-42.

    WANG S, LU Z, LI F, et al. A review of pollution status and toxicological researches of typical brominated flame retardants tetrabromobisphenol A (TBBPA) and decabromodiphenyl ethane (DBDPE) [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 24-42(in Chinese).

    [10] 高佳楠, 王树涛, 齐虹, 等. 4种类型土壤中十溴二苯乙烷的光降解行为 [J]. 环境科学与技术, 2021, 44(10): 66-74.

    GAO J N, WANG S T, QI H, et al. Photodegradation of decabromodiphenyl ethane in four different soils [J]. Environmental Science & Technology, 2021, 44(10): 66-74(in Chinese).

    [11] 李海燕. 广州城市污水厂中卤系阻燃剂和污泥重金属研究[D]. 广州: 广州大学, 2015.

    LI H Y. Study of HFRs and heavy metals in municipal sewage treatment plant in Guangzhou[D]. Guangzhou: Guangzhou University, 2015(in Chinese).

    [12] WANG J, CHEN S J, NIE X, et al. Photolytic degradation of decabromodiphenyl ethane (DBDPE) [J]. Chemosphere, 2012, 89(7): 844-849. doi: 10.1016/j.chemosphere.2012.05.006
    [13] 范荣桂, 魏来, 张泽伟, 等. 水中典型溴系阻燃剂的降解与测定方法 [J]. 应用化工, 2020, 49(8): 2116-2121.

    FAN R G, WEI L, ZHANG Z W, et al. Degradation and determination method of typical bromine flame retardant in water [J]. Applied Chemical Industry, 2020, 49(8): 2116-2121(in Chinese).

    [14] 刘舒巍, 杨兴桐, 张从轩, 等. 氯系阻燃剂四氯双酚A的毒性及降解技术研究进展 [J]. 化工环保, 2017, 37(2): 145-151.

    LIU S W, YANG X T, ZHANG C X, et al. Research progresses on ecotoxicology and degradation technology of tetrachlorobisphenol-a as chlorine flame retardant [J]. Environmental Protection of Chemical Industry, 2017, 37(2): 145-151(in Chinese).

    [15] 孙家宁, 孙韶华, 宋娜, 等. 高级氧化技术去除水中溴系阻燃剂的研究进展 [J]. 工业水处理, 2022, 42(2): 19-26.

    SUN J N, SUN S H, SONG N, et al. Research progress of advanced oxidation technology to remove brominated flame retardants from water [J]. Industrial Water Treatment, 2022, 42(2): 19-26(in Chinese).

    [16] 郭耀广. 基于光化学高级氧化技术降解水中典型卤代酚类污染物的研究[D]. 上海: 东华大学, 2014.

    GUO Y G. Photochemical advanced oxidation processes-based degradation of typical halogenated organic phenolic pollutants in water[D]. Shanghai: Donghua University, 2014(in Chinese).

    [17] 张静, 严静娜, 郭悦宁, 等. 阻燃剂四溴双酚A的厌氧-好氧生物降解 [J]. 环境化学, 2016, 35(9): 1776-1784. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2016.09.2016013001

    ZHANG J, YAN J N, GUO Y N, et al. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A [J]. Environmental Chemistry, 2016, 35(9): 1776-1784(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2016.09.2016013001

    [18] DONG H Y, QIANG Z M, HU J, et al. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes [J]. Water Research, 2017, 121: 178-185. doi: 10.1016/j.watres.2017.05.030
    [19] PAN M W, WU Z H, TANG C Y, et al. Emerging investigators series: Comparative study of naproxen degradation by the UV/chlorine and the UV/H2O2 advanced oxidation processes[J]. Environmental Science: Water Research & Technology, 2018, 4(9): 1219-1230.
    [20] YEOM Y, HAN J R, ZHANG X R, et al. A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants [J]. Chemical Engineering Journal, 2021, 424: 130053. doi: 10.1016/j.cej.2021.130053
    [21] HUA Z C, LI D, WU Z H, et al. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide [J]. Water Research, 2021, 188: 116549. doi: 10.1016/j.watres.2020.116549
    [22] ZHOU Y J, CHENG F Y, HE D Y, et al. Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter [J]. Water Research, 2021, 192: 116857. doi: 10.1016/j.watres.2021.116857
    [23] 程艳, 陈会明, 于文莲, 等. QSAR技术对高关注化学物质生态环境毒理风险预测 [J]. 环境科学研究, 2009, 22(7): 817-822. doi: 10.13198/j.res.2009.07.67.chengy.010

    CHENG Y, CHEN H M, YU W L, et al. Eco-environmental toxicity risk prediction for substances of very high concern with QSAR approach [J]. Research of Environmental Sciences, 2009, 22(7): 817-822(in Chinese). doi: 10.13198/j.res.2009.07.67.chengy.010

    [24] YIN R, BLATCHLEY E R 3rd, SHANG C. UV photolysis of mono- and dichloramine using UV-LEDs as radiation sources: Photodecay rates and radical concentrations[J]. Environmental Science & Technology, 2020, 54(13): 8420-8429.
    [25] DEMIRCIOĞLU Z, ALBAYRAK KAŞTAŞ Ç, BÜYÜKGÜNGÖR O, et al. The spectroscopic (FT-IR, UV-vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 139: 539-548. doi: 10.1016/j.saa.2014.11.078
    [26] LU T, CHEN F W, et al. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885
    [27] GEERLINGS P, de PROFT F, LANGENAEKER W, et al. Conceptual density functional theory [J]. Chemical Reviews, 2003, 103(5): 1793-1874. doi: 10.1021/cr990029p
    [28] ZACHARIAS A O, VARGHESE A, AKSHAYA K B, et al. DFT, spectroscopic studies, NBO, NLO and Fukui functional analysis of 1-(1-(2, 4-difluorophenyl)-2-(1H-1, 2, 4-triazol-1-yl)ethylidene) thiosemicarbazide [J]. Journal of Molecular Structure, 2018, 1158: 1-13. doi: 10.1016/j.molstruc.2018.01.002
    [29] BELFIELD S J, ENOCH S J, FIRMAN J W, et al. Determination of “fitness-for-purpose” of quantitative structure-activity relationship (QSAR) models to predict (eco-) toxicological endpoints for regulatory use [J]. Regulatory Toxicology and Pharmacology, 2021, 123: 104956. doi: 10.1016/j.yrtph.2021.104956
    [30] WANG J J, QIN J Z, LIU B J, et al. Reaction mechanisms and toxicity evolution of Sulfamethoxazole degradation by CoFe-N doped C as Electro-Fenton cathode [J]. Separation and Purification Technology, 2022, 298: 121655. doi: 10.1016/j.seppur.2022.121655
    [31] LI Z Y, WANG F, ZHANG Y M, et al. Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: Synthesis, catalytic mechanism and products toxicity assessment [J]. Chemical Engineering Journal, 2021, 423: 130093. doi: 10.1016/j.cej.2021.130093
    [32] FAN Y J, YANG J, CAI K C, et al. Mechanism of 9, 10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide degradation in UV light-emitting diodes lamp driven sodium sulfite activation process [J]. Process Safety and Environmental Protection, 2022, 165: 704-715. doi: 10.1016/j.psep.2022.07.064
    [33] HEGER S, BRENDT J, HOLLERT H, et al. Green toxicological investigation for biofuel candidates [J]. Science of the Total Environment, 2021, 764: 142902. doi: 10.1016/j.scitotenv.2020.142902
    [34] MA C, LIU X G, WU X H, et al. Kinetics, mechanisms and toxicity of the degradation of imidaclothiz in soil and water [J]. Journal of Hazardous Materials, 2021, 403: 124033. doi: 10.1016/j.jhazmat.2020.124033
    [35] ZHU Y X, ZHENG Y Q, JIAO B, et al. Photodegradation of enestroburin in water by simulated sunlight irradiation: Kinetics, isomerization, transformation products identification and toxicity assessment [J]. Science of the Total Environment, 2022, 849: 157725. doi: 10.1016/j.scitotenv.2022.157725
    [36] LIU W, LI Y Y, LIU F Y, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation [J]. Water Research, 2019, 151: 8-19. doi: 10.1016/j.watres.2018.11.084
    [37] WAN D, WANG H Y, POZDNYAKOV I P, et al. Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent [J]. Water Research, 2020, 184: 116002. doi: 10.1016/j.watres.2020.116002
    [38] GUO Y G, ZHOU J, LOU X Y, et al. Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates [J]. Chemical Engineering Journal, 2014, 254: 538-544. doi: 10.1016/j.cej.2014.05.143
    [39] CHEN J, XU X X, PAN X X, et al. Mechanism insights into the oxidative degradation of decabromodiphenyl ethane by potassium permanganate in acidic conditions [J]. Chemical Engineering Journal, 2018, 332: 267-276. doi: 10.1016/j.cej.2017.09.071
    [40] LI C G, ZUO J L, LIANG S J, et al. Photodegradation of decabromodiphenyl ethane (DBDPE) adsorbed on silica gel in aqueous solution: Kinetics, products, and theoretical calculations [J]. Chemical Engineering Journal, 2019, 375: 121918. doi: 10.1016/j.cej.2019.121918
  • 加载中
图( 2) 表( 4)
计量
  • 文章访问数:  2862
  • HTML全文浏览数:  2862
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-10-17
  • 刊出日期:  2024-01-27
卢志磊, 范勇杰, 陈洁洁, 杨婧, 吴春山, 孙启元. 基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估[J]. 环境化学, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002
引用本文: 卢志磊, 范勇杰, 陈洁洁, 杨婧, 吴春山, 孙启元. 基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估[J]. 环境化学, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002
LU Zhilei, FAN Yongjie, CHEN Jiejie, YANG Jing, WU Chunshan, SUN Qiyuan. Product prediction and toxicity assessment of halogen-containing flame retardants degraded by UV/hypochlorous acid systems based on Gaussian and ECOSAR models[J]. Environmental Chemistry, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002
Citation: LU Zhilei, FAN Yongjie, CHEN Jiejie, YANG Jing, WU Chunshan, SUN Qiyuan. Product prediction and toxicity assessment of halogen-containing flame retardants degraded by UV/hypochlorous acid systems based on Gaussian and ECOSAR models[J]. Environmental Chemistry, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002

基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估

    通讯作者: E-mail: minglei_2008@fjnu.edu.cn
  • 1. 福建师范大学环境科学与工程学院,福州,350007
  • 2. 福建省污染控制与资源循环利用重点实验室,福州,350007
  • 3. 福建省高校城市废物资源化技术与管理工程研究中心,福州 ,350007
基金项目:
国家自然科学基金(52070044)和福建省自然科学基金(2021J06022)资助.

摘要: 含卤阻燃剂广泛应用于各类电子产品的生产,难降解且具有生物毒性. 在生产和使用过程中,部分含卤阻燃剂会残留在水体并排放到水环境造成累积污染,威胁水环境安全,亟需探寻有效的降解去毒方法. 本研究通过Gaussian与ECOSAR模型预测了四氯双酚A (TCBPA)、四溴双酚A (TBBPA)、十溴二苯乙烷 (DBDPE) 等3种典型含卤阻燃剂在紫外/次氯酸 (UV/Cl)体系中的光催氧化降解路径与产物毒性. 结果表明, UV/Cl体系中的含氯自由基 (RCS) 与羟基自由基 (·OH) 易攻击阻燃剂分子结构上键能较低、Fukui指数较高的位点,促使C—Cl键、C—Br键、C—C键等因为受到攻击而断裂,进而降解阻燃剂. 同时,利用ECOSAR模型评估发现降解产物的急性毒性LC50-96 h均低于100 mg·L−1,佐证了UV/Cl体系对含卤阻燃剂降解的有效性,并降低其环境危害. 因此,采用Gaussian计算、ECOSAR模型相结合的分析方法,能够更加便捷地预测阻燃剂降解路径与产物毒性特征,为深入揭示UV/Cl体系光催氧化降解含卤阻燃剂机理提供新思路.

English Abstract

  • 含卤阻燃剂是一类能阻止聚合物材料引燃或抑制火焰传播的含卤有机化合物,包括“氯系阻燃剂”和“溴系阻燃剂”,由于其阻燃效果好,添加量少,性能优异,广泛应用于各类电子产品的生产过程中[1]. 在工业生产及日常使用过程中,一些含卤阻燃剂被废弃后会在环境中残留[2]. 相关研究表明,四氯双酚A(TCBPA)在河流沉积样中被检测出浓度达到542.6 ng·g−1;四溴双酚A(TBBPA)在废水中浓度为102—103 ng·L−1,十溴二苯乙烷(DBDPE)在制造工厂土壤中浓度最高达34000 ng·g−1[3-5]. 部分含卤阻燃剂由于具有持久性、生物富集毒性和长距离迁移等特性,经过在环境中的长期累积[6-9],成为威胁环境安全的污染物,对生物和人类的健康造成不良影响[10-13]. 因此,对含卤阻燃剂进行降解减毒研究具有重要意义.

    目前,对含卤阻燃剂的降解方法主要有微生物降解、高温热处理、高级氧化等技术. 微生物降解技术虽然成本较低,但降解缓慢,降解周期长;高温热处理技术通过使污染物在高温下氧化热解作用而达降解,该方法过程简单、降解效率高,但在高温环境降解过程中可能产生有毒气体和其它有毒副产物,造成二次污染;高级氧化技术具有反应速度快,降解效率高,氧化能力强等优点,是近年来较被广泛关注的阻燃剂降解工艺 [14-17]. 相较于上述工艺,紫外/次氯酸 (UV/Cl)体系能够为饮用水处理系统提供多种消毒屏障[18],体系中的余氯具有持续的消毒作用,是新兴的高级氧化工艺,它常用作自来水厂、污水处理厂中水体的消毒. 该体系通过产生高活性的含氯自由基 (RCS ) [19-20],对污染物的富电子基团进行攻击,从而实现对污染物的降解,但降解后的产物种类和产物的毒性鉴定需要高端昂贵仪器或复杂实验检测分析[21-22],一般实验室研究人员无法企及. 该研究采用Gaussian模型和Multiwfn程序通过非实验测试的方法计算出有机物分子中各化学键的键能和Fukui指数,判断各活性位点的化学属性,从而实现降解产物的推测. ECOSAR能够通过定量构效关系(QSAR )来对有机物的毒性进行预测[23],但采用Gaussian计算、ECOSAR模型对阻燃剂的降解路径和毒性预测仍鲜见研究报道.

    该研究选择模拟UV/Cl的高级氧化工艺,对TCBPA、TBBPA、DBDPE这3种代表性的含卤阻燃剂的降解产物进行预测与毒性评估. 采用Gaussian软件与Multiwfn程序对TCBPA、TBBPA、DBDPE上位点的键能及Fukui指数进行计算,从而预测出降解产物路径,并用ECOSAR软件对预测出的降解产物进行毒性评估,旨在为难降解毒害性有机物光催化降解路径、机理与产物毒性特征的预测分析提供新思路.

    • 通过GaussView5.0构建含卤阻燃剂各组分结构后,选择几何优化与振动频率分析(Opt+Freq),以密度泛函理论 (DFT) 为基础,使用B3LYP方法,基组水平设置为6-31G (2df,2p),设置100 MB的计算储存空间用于保存input文件,并将input文件在Gaussian 09W软件中打开,将循环次数(maxcycle)设置为200,以确保计算结果的准确性. Gaussian 09W计算完成后,将含卤阻燃剂各组分结构的out文件中的结果参照公式(1)进行计算,将化学键断裂后两个离解部分的分子能量之和扣除初始化合物的分子能量,即为化学键离解能[24].

      式中D1D2分别表示两个离解部分的分子能量,D3表示键离解能,D表示初始化合物的分子能量.

    • 基于密度函数理论 (DFT) 通过Multiwfn程序计算上述含卤阻燃剂的Fukui指数. Fukui指数是指由于分子中的电子数的变化从而引起的分子中的电子密度函数变化[25-27],它能够提供分子得到或失去电子的电势信息,从而通过数值的高低预测分子中更易受到亲电(f-)或者亲核攻击(f+)的位点[28].

    • QSAR模型能够将化学活性与分子结构和组成相联系,从而预测有机物毒性[29]. 研究表明,ECOSAR软件被认为是估计水生毒性的最佳效果预测程序之一,并且通过将ECOSAR软件的预测值与实测值进行比较,证实了ECOSAR软件的可靠性及有效性[30-35]. 因此采用ECOSAR Version 2.0 (2000-2016 U.S. Environmental Protection Agency)软件能够预测含卤阻燃剂降解产物对鱼类的毒性,通过毒性数据判断所预测的阻燃剂及其降解产物的生态危害水平.

    • Gaussian 09对阻燃剂各位点键能的计算结果如表1所示,可以发现在TCBPA结构中,键C5—Cl13、C8—Cl15的键能最小,均为256.0496 kJ·mol−1,键能较接近的还有键C1—Cl14、C10—Cl16,它们的键能均为261.7385 kJ·mol−1,这4个键的键能较其他位点低,更容易受到自由基的攻击而产生取代、加成等反应. 在TBBPA结构中,C9—C10、C9—C11是结构中键能最小的两个键,且两个键的键能接近,分别为272.2355 kJ·mol−1、272.6038 kJ·mol−1,因此这两个键断裂所需的能量相较于其他键最小,较容易断裂. 在DBDPE结构中, 最小键能的C1—C2仅为258.8407 kJ·mol−1,相比之下更容易断裂,在UV/Cl体系中受到RCS (活性氯自由基)、·OH等自由基的攻击的可能性最大.

    • Fukui指数中f-的数值能够表征活性位点受到自由基攻击的难易程度,f-的数值越大表明越容易受到氧化性自由基的攻击[36]. 因此,该研究通过引入Fukui指数,对键能预测断键点位的准确性加以佐证. 通过分析表2可以发现,在TBBPA结构中,位点Br18(f - = 0.1164 )、Br20(f - = 0.0889 )、Br21(f - = 0.0814 )的 f -指数最高,与结构中键能低的位点基本吻合.在TCBPA结构(表3)中,位点Cl13 (f- = 0.0685)、Cl14 (f- = 0.0765)、Cl15 (f- = 0.0685)、Cl16 (f- = 0.0765)的f-指数相对较高,因此,在UV/Cl体系中,上述四位点最容易受到RCS与·OH的攻击,与表1键能计算所预测的位点基本一致. 在DBDPE结构 (表4 )中,具有最高的f-指数的位点为Br9 (f- = 0.0909 )、Br10 (f- = 0.0841)、Br12 (f- = 0.1009)、Br21 (f- = 0.1009)、Br23 (f- = 0.0841)、Br24 (f- = 0.0908),与Gaussian计算出的DBDPE结构中的键能较低的位点相吻合,推测在降解过程中更容易产生断裂.

    • 在UV/Cl体系中,RCS与·OH对TCBPA的降解起主导作用,由于键C5—Cl13、C8—Cl15的键能最低,RCS与·OH首先攻击这两个位点,位点随之被·OH取代,随着反应的进一步进行,TCBPA上的键进一步断裂,降解路径如图1(A)所示,预测的最终产物与Wan等[37]的实验研究所得一致. TBBPA结构中,键C9—C11的键能最小,因此在UV/Cl体系中的RCS与·OH使其断裂为B1、B4两部分,B4通过·OH的氧化作用产生脱溴从而进一步转化为苯酚,B1的降解路径如图1(B)所示. 经研究,预测产物与Guo等[38]实验研究结论基本一致,再次验证了反应体系中的RCS和·OH会对键能较低,即活性较高的位点进行攻击. 反应体系中RCS与·OH对活性较高的C1—C2进行攻击,由于二者的强氧化性,使DBDPE在降解过程中产生一系列电子转移、脱氢与脱溴反应,如图1(C)所示. 预测降解产物与Chen等[39-40]实验研究的最终降解产物相一致. 因此,具有较低键能与较高f-指数的位点活性更高,自由基对这一类位点的反应性更高,更容易对其进行攻击.

    • 该研究采用ECOSAR软件对模拟出的各阻燃剂的降解产物进行了毒性推测与分析(图2),可以看出鱼类在TCBPA的溶液中96 h后的LC50为0.06 mg·L−1,具有非常强的毒性,然而通过UV/Cl体系中自由基氧化的作用下,TCBPA降解产物的毒性相较于TCBPA本身明显下降,尤其是产物C6的LC50为4230 mg·L−1. 如图2(B)所示,鱼类在TBBPA溶液中96 h后的LC50也达0.023 mg·L−1, 显示TBBPA的降解产物毒性随着降解的逐步进行,也出现了显著的降低,产物B3、B6、B7的LC50分别为3.28×102、2.43 × 103、1.68 × 105 mg·L−1,都达到了无害水平.

      图2(C)中,对于DBDPE来说,鱼类在其溶液中96 h的LC50为2.8 × 10−8 mg·L−1,毒性明显大于TCBPA与TBPA,但最终通过UV/Cl体系高效的降解,DBDPE降解产物的毒性也逐步降低,D11的LC50也达到了124 mg·L−1. 通过对各含卤阻燃剂的降解产物毒性推测,说明UV/Cl体系中产生的RCS与·OH攻击了键能较低的位点,被快速有效降解. 因此,UV/Cl体系对含卤阻燃剂具有高效的降解效果,同时降解产物的毒性较产物本身普遍降低.

    • (1)该研究通过Gaussian 09软件和Mutiwfn程序对3种典型的含卤阻燃剂(TCBPA、TBBPA、DBDPE)的键能与Fukui指数进行计算,进而通过比较分析各化学键位的断裂势,推测出各降解路径和产物.

      (2)ECOSAR软件是评估降解产物水生毒性效应的有效可靠预测工具. 该研究通过 ECOSAR Version 2.0 (2000-2016 U.S. Environmental Protection Agency)软件对含卤阻燃剂的降解产物进行毒性预测与分析,得出阻燃剂降解产物的毒性均低于阻燃剂母体的评估结果,说明通过UV/Cl体系降解含卤阻燃剂可有效降低潜在的环境危害.

      (3)尽管采用模型与软件对阻燃剂的降解路径和毒性预测不能完全代替实验分析,但通过非实验测试的方法不仅能够为研究提供简便有效的路径方法,实现对含卤阻燃剂及其他持久毒害性有机污染物降解机理和产物毒性快速预测.

    参考文献 (40)

返回顶部

目录

/

返回文章
返回