-
四环素类抗生素(tetracyclines,TCs)是一种天然或半合成的广谱性抗生素,其名称来源于4个碳氢环(如图1),对多种革兰氏阳性和革兰氏阴性细菌等致病菌具有抗菌活性[1]. 其中,四环素(TC)、土霉素(OTC)、金霉素(CTC)和强力霉素(DOX)是目前常用的4种类型[2],其理化性质见表1. 据统计,TCs是中国畜牧业中使用最广泛的兽药抗生素和饲料添加剂[3],每年消耗量达1000 t[4].
研究表明,超过75%的TCs无法被动物体完全代谢或吸收[5],导致其不可避免地排放到水生环境中. 目前已在多个国家的湖泊(ND未检出—680 ng·L−1)、河流(ND—741.85 ng·L−1)甚至饮用水(ND—182 ng·L−1)中频繁检出[3,6],而制药厂的废水虽然经过污水处理厂处理,但在部分处理过的废水中仍能检出,浓度高达88 μg·L-1[7]. 水环境中的TCs污染会直接导致环境微生物生态系统的破坏,可能引起水生环境中微生物(尤为病原微生物)种群抗生素耐药性的变化,诱导TCs抗性基因(TET-ARGs)的产生、传播以及抗性菌产生的风险[8-9]. 研究指出,即使水体中TCs浓度较低,也可能促进具有抗生素耐药性甚至多重耐药性细菌的繁殖,从而危及生命健康[10]. 目前,抗生素耐药性已被世卫组织列为人类健康的全球性威胁[11]. 据估计,如果抗生素耐药性得不到有效缓解,到2050年,每年将会导致约1000万人死亡,造成数万亿美元的经济损失[12]. 基于以上事实,我国“十四五”规划已将抗生素类物质列入环保重点管控新污染物名单. 因此,开发一种有效的方法来降解水环境中的TCs是新污染治理邻域亟待解决的问题.
光催化降解技术是一种处理效率高、环境友好、具有经济效益的降解技术. 其以太阳辐射为能源,利用光催化剂电子-空穴对的强氧化还原特性进行降解,无需加入额外的氧化剂/还原剂便可将TCs降解为二氧化碳和水,可有效缓解抗生素耐药性的传播[13]. 近年来,光催化降解TCs的技术主要围绕单组分光催化剂和复合光催化剂展开. 然而TiO2[14]、WO3[15]、Cu2O[16]等传统的单组分光催化剂仍存在可见光利用不足、光生电荷快速湮灭、目标物质矿化不完全等缺陷,严重制约了其应用. 为提高光催化效率,研究者们主要从扩大光吸收范围、提升光生载流子分离效率、增加活性位点以及增强氧化还原能力等方面对单组分光催化剂进行复合改性以提高其催化性能[17].
本文综述了复合光催化剂降解水体中TCs的最新研究进展. 首先从负载介孔材料、掺杂金属/非金属元素、染料敏化、负载助催化剂、构造异质结结构等方面详细阐述了复合光催化剂在水体中TCs降解领域的发展与应用,然后针对复合光催化剂催化降解TCs的机理及过程进行介绍,最后提出复合光催化剂降解水体中TCs的主要挑战和发展前景.
高效降解环境新污染物四环素的复合光催化剂:从材料设计到降解机制
Composite photocatalysts for efficient degradation of emerging contaminant tetracyclines: From material design to degradation mechanisms
-
摘要: 四环素类抗生素是目前使用量最大,使用频率最高的一类抗生素. 近年来,日益严峻的四环素污染对生态系统和人类健康造成严重危害,我国“十四五”规划已将抗生素类物质纳入环保重点管控的新污染物名单. 因此,如何有效降解四环素已成为环境污染治理领域亟待解决的问题. 光催化降解作为一种低能耗、可重复利用和环境友好型的降解技术,在四环素降解方面具有较大的应用前景. 然而采用单组分光催化剂的光催化降解技术存在着可见光利用不足、光生电荷复合率高等缺陷,导致四环素降解时矿化不完全,有高毒性中间产物生成. 为了克服这些问题,研究者们开发出了兼具广吸收光谱性和强氧化还原性的复合光催化剂. 本文调研和梳理了近五年复合光催化剂降解四环素的研究现状,从复合光催化剂的设计与合成、四环素的降解性能、降解反应机制等方面进行了阐述. 结果显示,在着重于提升光吸收效率、光生载流子传输能力、光生电子-空穴分离效率等方面,通过介孔材料负载、金属/非金属元素掺杂、染料敏化、助催化剂负载、异质结结构构造等调控手段,设计制备出多种复合光催化剂,有效提升了光催化反应活性,显著提高了水体中四环素的光催化降解性能,四环素降解率达到63.7%—100%,矿化率达到34.4%—100%. 最后,针对复合光催化剂现存的问题,包括选择性不高、稳定性较差、毒性效应有待进一步探索等方面进行总结与展望,以期实现其在实际水体中的应用.Abstract: Tetracycline antibiotics (TCs) are the most widely and frequently used antibiotics. In recent years, the increasingly severe tetracycline pollution has caused serious impacts on ecological systems and human health. Antibiotics have been included in the list of emerging contaminants under priority environmental control in the 14th Five-Year Plan of China. Therefore, efficient degradation of tetracycline has become an urgent problem to be solved in the field of environmental pollution control. As a green degradation technology, photocatalysis with low energy consumption, reusablility and environmental friendliness has a great application prospect in the degradation of tetracycline. However, photocatalysis using a single component of photocatalyst has the weakness of insufficient utilization of visible light and high recombination rate of photogenerated charge. In order to overcome these problems, researchers have developed composite photocatalysts with wide absorption spectrum and strong redox capability. In this paper, we surveyed and analyzed the works published in the past 5 years on the photocatalytic degradation of tetracyclines with composite photocatalysts, and described the progress from the aspects of design and synthesis of composite photocatalysts, degradation performance and degradation mechanism of tetracycline. The results showed that focusing on improving the light absorption efficiency of photocatalysts, the separation and transfer capacity of photogenerated carriers, a variety of composite photocatalysts were designed and prepared through a series of strategies including the support of mesoporous materials, metal/non-metal element doping, dye sensitization, cocatalyst loading, and heterojunction constructing etc, which effectively improved the photocatalytic activity and degradation efficiency of tetracycline in water. The degradation rate of tetracycline reached 63.7%—100% and the mineralization rate reached 34.4%—100%. Finally, the existing problems of composite photocatalysts, such as low selectivity, poor stability and unknown toxic effects were summarized and prospected to realize their application in actual water.
-
表 1 主要TCs的理化性质
Table 1. Physical and chemical properties of main tetracycline antibiotics
化合物
Compounds缩写
Abbreviation化学物质
登录号
CAS分子式
Molecular formula分子量
Molecular weight极性表面积
Polar surface area油水分配
系数
lgP水溶性/(mg·L−1)
Water solubility四环素 TC 60-54-8 C22H24N2O8 444.4 181.62000 0.48590 231 土霉素 OTC 79-57-2 C22H24N2O9 460.4 201.85000 −0.54330 313 金霉素 CTC 57-62-5 C22H23ClN2O8 478.9 181.62000 1.13930 — 强力霉素 DOX 564-25-0 C22H26N2O9 462.4 181.62000 0.35270 630 P,物质在正辛醇和水中的分配系数比值. P, the ratio of the partition coefficient of a substance in octanol to water. 表 2 介孔材料负载光催化剂降解TCs概况
Table 2. Summary of TCs degradation by photocatalysts supported on mesoporous materials
抗生素
Antibiotic材料
Materials比表面积/
(m2·g−1)
SBET降解条件
Degradation conditions降解效率
Degradation efficiency矿化率
Mineralization efficiency参考
文献
Ref.时间/
min
Time催化剂浓度/
(mg·L−1)
Concentration of
photocatalyst抗生素浓度/(mg·L−1)
Concentration of
antibioticTC 介孔石墨烯/SiO2 341.0 60 50 30 89.0% — [19] TC 介孔SiO2/g-C3N4 — 60 333 20 92.9% — [20] TC 污泥/TiO2 93.0 120 10 5 80.0% — [21] TC 介孔Ag/Bi2Sn2O7/C3N4 66.0 90 1000 20 89.1% — [22] TCH 介孔SiO2-Ag/AgBr 1182.0 150 300 40 92.8% 81.2% [23] TCH 介孔TiO2/非晶TiO2 — 300 500 50 81.1% 53.7% [24] TCH Pt/非晶TiO2/介孔TiO2 34.5 300 500 — 100.0% 75.9% [25] TC 介孔石墨烯/TiO2 55.0 300 10 20 93.4% 68.2% [26] TC AgBr/TiO2/Pal 48.1 120 500 20 90.0% 67.0% [27] TC Ag2S/MIL-53 (Fe) 199.3 60 667 20 94.0% — [28] 表 3 元素掺杂复合光催化剂降解TCs概况
Table 3. Summary of TCs degradation by element-doped composite photocatalysts
抗生素
Antibiotic材料
Materials带隙值/eV
Band gap降解条件
Degradation conditions降解效率
Degradation
efficiency矿化率
Mineralization
efficiency参考文献
Ref.时间/min
Time催化剂浓度/
(mg·L−1)
Concentration of
photocatalyst抗生素浓度/
(mg·L−1)
Concentration of
antibioticTC Cu/WO3 2.69 120 500 50 96.7% — [38] TC La, Cr/SrTiO3 — 90 500 20 83.0% — [39] TC Fe/g-C3N4 2.49 80 500 20 63.7% — [40] TCH Ag/CN/Na2SO4 2.52 60 500 10 70.0% — [41] TCs Pt/g-C3N4/ZnIn2S4 2.48 40 1000 10 83.0%—97.0% — [42] TC Ag/g-C3N4 — 120 20000 20 96.8% 91.5% [43] TC S-CQDs/g-C3N4 2.47 60 1000 20 82.7% 35.2% [44] TC C/g-C3N4 2.54 90 — — 95.0% — [45] TC P/Mo-CN 2.37 120 500 10 69.0% — [46] 表 4 光敏化剂负载光催化剂降解TCs概况
Table 4. Degradation of TCs by sensitized photocatalyst
抗生素
Antibiotic材料
Materials敏化剂
Sensitizer降解条件
Degradation conditions降解效率
Degradation
efficiency矿化率
Mineralization efficiency参考文献
Ref.时间/min
Time催化剂浓度/
(mg·L−1)
Concentration of
photocatalyst抗生素浓度/
(mg·L−1)
Concentration of
antibioticTCH BiOBr0.9I0.1 RhB 8 200 10 67.0% — [60] TC ZnS 花青素 300 2000 40 81.0% — [61] TC g-C3N4 ZnTCPP 120 3000 30 80.3% 63.8% [62] TC BiOCl TCPP 120 400 20 74.3% — [63] TC CoWO4 ZnPcs 170 4 1.45×10−5 mol·L−1 kobs=28.6×10−4 min−1 — [64] TC CeO2/Bi2MoO6 TNCuPc 120 3000 50 94.6% 83.5% [65] kobs,表观一级反应速率常数(min−1). kobs, apparent first order reaction rate constant (min−1). 表 5 助催化剂负载光催化剂降解TCs概况
Table 5. Degradation of TCs by co-catalyst loaded photocatalysts
抗生素
Antibiotic材料
Materials助催化剂
Co-catalyst降解条件
Degradation conditions降解效率
Degradation efficiency矿化率
Mineralization efficiency参考文献
Ref.时间/min
Time催化剂浓度/(mg·L−1)
Concentration of photocatalyst抗生素浓度/
(mg·L−1)
Concentration of
antibioticTC Ag/BCN-CLT Ag 180 1000 30 87.2% — [68] TC Ag/CN Ag 120 200 30 77.0% — [69] TCs Ag/AgBr/BiOIO3 Ag 300 500 10 47.8% — [70] TC Ag-BiVO4 Ag 60 500 20 89.5% 41.7% [71] TC Au/BiOCOOH Au 160 200 20 56.4% — [72] TC P-TCN/WC WC 60 500 20 93.8% 68.2% [73] TC TiOx@Ag/AgCl TiOx 5 5500 40 80.0% 58.8% [74] TC CoS/CeO2 CoS 60 500 40 96.5% — [75] 表 6 p-n异质结光催化剂降解TCs概况
Table 6. Summary of TCs degradation by p-n heterojunction photocatalysts
抗生素
Antibiotic材料
Materials带隙值/eV
Band gap降解条件
Degradation conditions降解效率
Degradation efficiency矿化率
Mineralization efficiency参考文献
Ref.p-Type
p型n-Type
n型时间/min Time 催化剂浓度/
(mg·L−1)
Concentration of
photocatalyst抗生素浓度/
(mg·L−1)
Concentration of
antibioticTC Ag2O/Ta3N5 1.30 2.10 180 2500 10 76.8% 56.4% [83] TC CaFe2O4/ZnFe2O4 1.34 1.63 60 1000 — 78.0% — [84] TCH BN/B-CN 4.10 2.50 60 200 20 88.1% — [85] TC g-C3N4/Cu2O 2.68 2.17 100 1111 30 92.1% 83.3% [86] TC BiOBr/BiOCOOH 2.06 2.68 120 1000 15 83.7% 72.4% [87] TC BiOCl/BiOCOOH 3.50 3.40 60 1000 20 80.4% 89.2% [88] TC BiOI/BiOCOOH 1.80 2.06 125 437.5 15 78.6% — [89] TC BiOI/Bi3O4Cl 1.77 2.61 180 — — 73.5% — [90] TCs Bi2O3/Ti3+-TiO2 2.89 (复合材料) 200 200 10 100.0% 98.0% [91] TCH Ag/Ag6Si2O7/
Bi2MoO61.58 2.66 120 50 20 71.4% 43.7% [92] TCs CuBi2O4/Bi2MoO6 1.77 2.68 60 300 20 72.8%—74.4% 34.4%—48.2% [93] 表 7 Z型异质结光催化剂降解TCs概况
Table 7. Summary of TCs degradation by Z-Scheme heterojunction photocatalysts
抗生素
Antibiotic材料
Materials带隙值/eV
Band gap降解条件
Degradation conditions降解效率
Degradation
efficiency矿化率
Mineralization
efficiency参考
文献
Ref.半导体A
Semicondu-ctor A半导体B
Semicondu-ctor B时间/
min
Time催化剂浓度/(mg·L−1)
Concentration of
photocatalyst抗生素浓度/
(mg·L−1)
Concentration of
antibioticTC Ag6Si2O7/Bi2WO6 1.38 2.70 120 625 20 86.8% 51.2% [96] TC BiVO4/α-Fe2O3 0.48 0.05 120 500 20 75.8% — [97] TC AgI/Zn3V2O8 2.99 3.19 140 333 20 91.0% — [98] TC AgBr/Bi2WO6 2.73 2.80 60 1000 20 87.5% 39.4% [99] TC WO3/g-C3N4 2.64 2.73 120 500 25 82.0% — [100] TCH Ag3PO4/PDIsm 2.43 1.80 8 1000 20 82.8% — [101] TCH Ag3PO4/C3N5 2.48 1.80 60 1000 20 90.5% — [102] DOX Bi7O9I3/g-C3N4 2.24 2.54 120 500 20 80.0% 67.8% [103] TCH CdTe/TiO2 1.78 2.90 30 600 20 78.0% — [104] -
[1] PÉREZ-RODRÍGUEZ M, PELLERANO R G, PEZZA L, et al. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination [J]. Talanta, 2018, 182: 1-21. doi: 10.1016/j.talanta.2018.01.058 [2] JAFARI OZUMCHELOUEI E, HAMIDIAN A H, ZHANG Y, et al. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment [J]. Water Environment Research, 2020, 92(2): 177-188. doi: 10.1002/wer.1237 [3] LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627: 1195-1208. doi: 10.1016/j.scitotenv.2018.01.271 [4] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [5] LUNDSTRÖM S V, ÖSTMAN M, BENGTSSON-PALME J, et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms [J]. Science of the Total Environment, 2016, 553: 587-595. doi: 10.1016/j.scitotenv.2016.02.103 [6] BEN Y J, HU M, ZHANG X Y, et al. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water [J]. Water Research, 2020, 175: 115699. doi: 10.1016/j.watres.2020.115699 [7] 雷雨洋, 李方方, 欧阳洁, 等. 浙江地区抗生素残留的环境分布特征及来源分析 [J]. 化学进展, 2021, 33(8): 1414-1425. LEI Y Y, LI F F, OUYANG J, et al. Environmental distribution characteristics and source analysis of antibiotics in Zhejiang area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425(in Chinese).
[8] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review [J]. Science of the Total Environment, 2021, 753: 141975. doi: 10.1016/j.scitotenv.2020.141975 [9] STACHUROVÁ T, MALACHOVÁ K, SEMERÁD J, et al. Tetracycline induces the formation of biofilm of bacteria from different phases of wastewater treatment [J]. Processes, 2020, 8(8): 989. doi: 10.3390/pr8080989 [10] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365-367. doi: 10.1126/science.1159483 [11] WORLD HEALTH ORGANIZATION. Antimicrobial resistance: Global report on surveillance [R/OL]. Geneva: WHO, 2014. [12] UNITED NATIONS. High-Level meeting on antimicrobial resistance [R/OL]. (2016-09-21)[2021-10-15]. [13] WANG S Z, WANG J L. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater [J]. Chemical Engineering Journal, 2019, 356: 350-358. doi: 10.1016/j.cej.2018.09.062 [14] LIU Y B, GAN X J, ZHOU B X, et al. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode [J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 678-683. [15] SZILÁGYI I M, FÓRIZS B, ROSSELER O, et al. WO3 photocatalysts: Influence of structure and composition [J]. Journal of Catalysis, 2012, 294: 119-127. doi: 10.1016/j.jcat.2012.07.013 [16] JING H Y, WEN T, FAN C M, et al. Efficient adsorption/photodegradation of organic pollutants from aqueous systems using Cu2O nanocrystals as a novel integrated photocatalytic adsorbent [J]. Journal of Materials Chemistry A, 2014, 2(35): 14563-14570. doi: 10.1039/C4TA02459A [17] DI T M, XU Q L, HO W, et al. Review on metal sulphide-based Z-scheme photocatalysts [J]. ChemCatChem, 2019, 11(5): 1394-1411. doi: 10.1002/cctc.201802024 [18] DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures [J]. Water Research, 2015, 79: 128-146. doi: 10.1016/j.watres.2015.04.038 [19] ALI A, SHOEB M, LI Y, et al. Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA 15)/TiO2 nanocomposite under visible-light irradiation [J]. Journal of Molecular Liquids, 2021, 324: 114696. doi: 10.1016/j.molliq.2020.114696 [20] WANG W, FANG J J, CHEN H. Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation [J]. Journal of Alloys and Compounds, 2020, 819: 153064. doi: 10.1016/j.jallcom.2019.153064 [21] ZHU X F, YUAN W Y, LANG M Q, et al. Novel methods of sewage sludge utilization for photocatalytic degradation of tetracycline-containing wastewater [J]. Fuel, 2019, 252: 148-156. doi: 10.1016/j.fuel.2019.04.093 [22] HEIDARI S, HAGHIGHI M, SHABANI M. Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: Type-II plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug [J]. Chemical Engineering Journal, 2020, 389: 123418. doi: 10.1016/j.cej.2019.123418 [23] LI W, CHU X S, HE S A, et al. A gourd-like hollow mesoporous silica particle-supported Ag/AgBr Schottky junction for highly efficient mineralization of tetracycline hydrochloride [J]. Environmental Science:Nano, 2020, 7(9): 2654-2668. doi: 10.1039/D0EN00746C [24] LYU J Z, SHAO J W, WANG Y H, et al. Construction of a porous core-shell homojunction for the photocatalytic degradation of antibiotics [J]. Chemical Engineering Journal, 2019, 358: 614-620. doi: 10.1016/j.cej.2018.10.085 [25] LYU J Z, ZHOU Z, WANG Y H, et al. Platinum-enhanced amorphous TiO2-filled mesoporous TiO2 crystals for the photocatalytic mineralization of tetracycline hydrochloride [J]. Journal of Hazardous Materials, 2019, 373: 278-284. doi: 10.1016/j.jhazmat.2019.03.096 [26] LI C X, HU R B, LU X F, et al. Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet [J]. Catalysis Today, 2020, 350: 171-183. doi: 10.1016/j.cattod.2019.06.038 [27] SHI Y Y, YAN Z, XU Y T, et al. Visible-light-driven AgBr-TiO2-Palygorskite photocatalyst with excellent photocatalytic activity for tetracycline hydrochloride [J]. Journal of Cleaner Production, 2020, 277: 124021. doi: 10.1016/j.jclepro.2020.124021 [28] DENG L L, YIN D G, KHAING K K, et al. The facile boosting sunlight-driven photocatalytic performance of a metal-organic-framework through coupling with Ag2S nanoparticles [J]. New Journal of Chemistry, 2020, 44(29): 12568-12578. doi: 10.1039/D0NJ02030C [29] YANG H, YU X, LIU J, et al. Preparation of magnetic Fe3O4/activated carbon fiber and a study of the tetracycline adsorption in aquaculture wastewater [J]. Materiali in Tehnologije, 2019, 53(4): 505-510. doi: 10.17222/mit.2018.234 [30] WU Z X, ZHAO D Y. Ordered mesoporous materials as adsorbents [J]. Chemical Communications (Cambridge, England), 2011, 47(12): 3332-3338. doi: 10.1039/c0cc04909c [31] WU H H, XIE H R, HE G P, et al. Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite [J]. Applied Clay Science, 2016, 119: 161-169. doi: 10.1016/j.clay.2015.08.001 [32] 张志旭, 吴根义, 许振成. 粘土矿吸附过程中四环素基团变化研究 [J]. 农业资源与环境学报, 2017, 34(2): 115-120. ZHANG Z X, WU G Y, XU Z C. Functional groups’ variation of tetracycline in the process of adsorption in clay minerals [J]. Journal of Agricultural Resources and Environment, 2017, 34(2): 115-120(in Chinese).
[33] PAPOULIS D, PANAGIOTARAS D, TSIGROU P, et al. Halloysite and sepiolite-TiO2 nanocomposites: Synthesis characterization and photocatalytic activity in three aquatic wastes [J]. Materials Science in Semiconductor Processing, 2018, 85: 1-8. doi: 10.1016/j.mssp.2018.05.025 [34] WANG L, JIN P X, DUAN S H, et al. In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction [J]. Science Bulletin, 2019, 64(13): 926-933. doi: 10.1016/j.scib.2019.05.012 [35] YANG H, HU S, ZHAO H, et al. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution [J]. Journal of Hazardous Materials, 2021, 416: 126046. doi: 10.1016/j.jhazmat.2021.126046 [36] NASALEVICH M A, van der VEEN M, KAPTEIJN F, et al. Metal–organic frameworks as heterogeneous photocatalysts: Advantages and challenges [J]. CrystEngComm, 2014, 16(23): 4919-4926. doi: 10.1039/C4CE00032C [37] GUO F, LI M Y, REN H J, et al. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light [J]. Separation and Purification Technology, 2019, 228: 115770. doi: 10.1016/j.seppur.2019.115770 [38] QUYEN V T, KIM J, PARK P M, et al. Enhanced the visible light photocatalytic decomposition of antibiotic pollutant in wastewater by using Cu doped WO3 [J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104737. doi: 10.1016/j.jece.2020.104737 [39] JIANG J Z, JIA Y S, WANG Y B, et al. Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La, Cr) under visible-light irradiation: The relationship of doping and performance [J]. Applied Surface Science, 2019, 486: 93-101. doi: 10.1016/j.apsusc.2019.04.261 [40] XU Y G, GE F Y, CHEN Z G, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance [J]. Applied Surface Science, 2019, 469: 739-746. doi: 10.1016/j.apsusc.2018.11.062 [41] WANG K L, LI Y, SUN T, et al. Ultrafine silver nanoparticles deposited on sodium-doped graphitic carbon nitride towards enhanced photocatalytic degradation of dyes and antibiotics under visible light irradiation [J]. Applied Surface Science, 2019, 476: 741-748. doi: 10.1016/j.apsusc.2019.01.168 [42] ZHOU J, DING J, WAN H, et al. Boosting photocatalytic degradation of antibiotic wastewater by synergy effect of heterojunction and phosphorus doping [J]. Journal of Colloid and Interface Science, 2021, 582: 961-968. doi: 10.1016/j.jcis.2020.08.099 [43] MINH TRI N L, KIM J, GIANG B L, et al. Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light [J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 597-605. doi: 10.1016/j.jiec.2019.08.037 [44] WANG W J, ZENG Z T, ZENG G M, et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light [J]. Chemical Engineering Journal, 2019, 378: 122132. doi: 10.1016/j.cej.2019.122132 [45] PANNERI S, GANGULY P, MOHAN M, et al. Photoregenerable, bifunctional granules of carbon-doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1610-1618. [46] XU Y S, LIANG Y H, ZENG Y A, et al. Co-doping g-C3N4 with P and Mo for efficient photocatalytic tetracycline degradation under visible light [J]. Ceramics International, 2022, 48(17): 24677-24686. doi: 10.1016/j.ceramint.2022.05.114 [47] ZHANG S W, LI J X, WANG X K, et al. in situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis [J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22116-22125. [48] ROZA L, FAUZIA V, RAHMAN M Y A, et al. ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution [J]. Optical Materials, 2020, 109: 110360. doi: 10.1016/j.optmat.2020.110360 [49] 张健伟, 苑鹏, 王建桥, 等. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能 [J]. 环境工程学报, 2020, 14(7): 1852-1861. ZHANG J W, YUAN P, WANG J Q, et al. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance [J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1852-1861(in Chinese).
[50] DUTTA D P, RAVAL P. Effect of transition metal ion (Cr3+, Mn2+ and Cu2+) doping on the photocatalytic properties of ZnWO4 nanoparticles [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 357: 193-200. doi: 10.1016/j.jphotochem.2018.02.026 [51] YAN X Q, XUE C, YANG B L, et al. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications [J]. Applied Surface Science, 2017, 394: 248-257. doi: 10.1016/j.apsusc.2016.10.077 [52] QU J N, DU Y, FENG Y B, et al. Visible-light-responsive K-doped g-C3N4/BiOBr hybrid photocatalyst with highly efficient degradation of Rhodamine B and tetracycline [J]. Materials Science in Semiconductor Processing, 2020, 112: 105023. doi: 10.1016/j.mssp.2020.105023 [53] VIET N M, TRUNG D Q, GIANG B L, et al. Noble metal-doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light [J]. Journal of Water Process Engineering, 2019, 32: 100954. doi: 10.1016/j.jwpe.2019.100954 [54] NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 [J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-425. doi: 10.1016/j.rser.2005.01.009 [55] 洪孝挺, 王正鹏, 陆峰, 等. 可见光响应型非金属掺杂TiO2的研究进展 [J]. 化工进展, 2004, 23(10): 1077-1080. doi: 10.3321/j.issn:1000-6613.2004.10.009 HONG X T, WANG Z P, LU F, et al. Study on visible light-activated non-metal doped titanium dioxide [J]. Chemical Industry and Engineering Progress, 2004, 23(10): 1077-1080(in Chinese). doi: 10.3321/j.issn:1000-6613.2004.10.009
[56] MORI K, YAMASHITA H. Progress in design and architecture of metal nanoparticles for catalytic applications [J]. Physical Chemistry Chemical Physics:PCCP, 2010, 12(43): 14420-14432. doi: 10.1039/c0cp00988a [57] QIAN X F, FUKU K, KUWAHARA Y, et al. Design and functionalization of photocatalytic systems within mesoporous silica [J]. ChemSusChem, 2014, 7(6): 1528-1536. doi: 10.1002/cssc.201400111 [58] HU F, XU S D, LIU B. Photosensitizers with aggregation-induced emission: Materials and biomedical applications [J]. Advanced Materials, 2018, 30(45): 1801350. doi: 10.1002/adma.201801350 [59] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009, 38(1): 253-278. doi: 10.1039/B800489G [60] HAN L P, LV Y W, LI B, et al. Enhancing H2 evolution and molecular oxygen activation via dye sensitized BiOBr0.9I0.1 under visible light [J]. Journal of Colloid and Interface Science, 2020, 580: 1-10. doi: 10.1016/j.jcis.2020.07.014 [61] AHADI M, TEHRANI M S, AZAR P A, et al. Novel preparation of sensitized ZnS nanoparticles and its use in photocatalytic degradation of tetracycline [J]. International Journal of Environmental Science and Technology, 2016, 13(12): 2797-2804. doi: 10.1007/s13762-016-1106-0 [62] MA Z Y, ZENG C, HU L L, et al. A high-performance photocatalyst of ZnTCPP sensitized porous graphitic carbon nitride for antibiotic degradation under visible light irradiation [J]. Applied Surface Science, 2019, 484: 489-500. doi: 10.1016/j.apsusc.2019.04.117 [63] HUANG Y, ZHAO P, MIAO H C, et al. Organic-inorganic TCPP/BiOCl hybrids with accelerated interfacial charge separation for boosted photocatalytic performance [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 616: 126367. doi: 10.1016/j.colsurfa.2021.126367 [64] MGIDLANA S, SEN P, NYOKONG T. Photodegradation of tetracycline by asymmetrical zinc(II)phthalocyanines conjugated to cobalt tungstate nanoparticles [J]. Journal of Molecular Structure, 2022, 1261: 132938. doi: 10.1016/j.molstruc.2022.132938 [65] LI K, PANG Y P, LU Q F. in situ growth of copper(ii) phthalocyanine-sensitized electrospun CeO2/Bi2MoO6 nanofibers: A highly efficient photoelectrocatalyst towards degradation of tetracycline [J]. Inorganic Chemistry Frontiers, 2019, 6(11): 3215-3224. doi: 10.1039/C9QI00950G [66] XU C J, SUN W J, DONG Y J, et al. A graphene oxide-molecular Cu porphyrin-integrated BiVO4 photoanode for improved photoelectrochemical water oxidation performance [J]. Journal of Materials Chemistry A, 2020, 8(7): 4062-4072. doi: 10.1039/C9TA13452B [67] GUO X H, ZHOU X J, LI X H, et al. Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis [J]. Journal of Colloid and Interface Science, 2018, 525: 187-195. doi: 10.1016/j.jcis.2018.04.028 [68] JODEYRI M, HAGHIGHI M, SHABANI M. Plasmon-assisted demolition of antibiotic using sono-photoreduction decoration of Ag on 2D C3N4 nanophotocatalyst enhanced with acid-treated clinoptilolite [J]. Ultrasonics Sonochemistry, 2019, 54: 220-232. doi: 10.1016/j.ultsonch.2019.01.035 [69] ZHANG P, WANG J Q, GONG J, et al. Fabrication of Ag/carbon nitride photocatalysts and their enhanced photocatalytic performance for tetracycline degradation [J]. Functional Materials Letters, 2020, 13(6): 2051033. doi: 10.1142/S1793604720510339 [70] CHEN F, HUANG H W, ZENG C, et al. Achieving enhanced UV and visible light photocatalytic activity for ternary Ag/AgBr/BiOIO3: Decomposition for diverse industrial contaminants with distinct mechanisms and complete mineralization ability [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7777-7791. [71] WU J D, WANG Y Q, LIU Z X, et al. Preparation of noble metal Ag-modified BiVO4 nanosheets and a study on the degradation performance of tetracyclines [J]. New Journal of Chemistry, 2020, 44(32): 13815-13823. doi: 10.1039/D0NJ03080E [72] MA C, WEI J J, JIANG K N, et al. Self-assembled micro-flowers of ultrathin Au/BiOCOOH nanosheets photocatalytic degradation of tetracycline hydrochloride and reduction of CO2 [J]. Chemosphere, 2021, 283: 131228. doi: 10.1016/j.chemosphere.2021.131228 [73] ZHANG Y, ZHANG M J, TANG L, et al. Platinum like cocatalysts tungsten carbide loaded hollow tubular g-C3N4 achieving effective space separation of carriers to degrade antibiotics [J]. Chemical Engineering Journal, 2020, 391: 123487. doi: 10.1016/j.cej.2019.123487 [74] HE W L, WANG K W, ZHU Z, et al. Ultra-small subnano TiOx clusters as excellent cocatalysts for the photocatalytic degradation of tetracycline on plasmonic Ag/AgCl [J]. Catalysis Science & Technology, 2020, 10(1): 147-153. [75] YU B, MENG F M, ZHOU T, et al. Construction of CoS/CeO2 heterostructure nanocages with enhanced photocatalytic performance under visible light [J]. Journal of the American Ceramic Society, 2020, 103(11): 6136-6148. doi: 10.1111/jace.17340 [76] SUN L, ZHANG R Z, WANG Y, et al. Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst [J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14819-14826. [77] WANG W, LAI M, FANG J J, et al. Au and Pt selectively deposited on{0 0 1}-faceted TiO2 toward SPR enhanced photocatalytic Cr(VI) reduction: The influence of excitation wavelength [J]. Applied Surface Science, 2018, 439: 430-438. doi: 10.1016/j.apsusc.2017.12.249 [78] ZHANG J L, LU Y, GE L, et al. Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation [J]. Applied Catalysis B:Environmental, 2017, 204: 385-393. doi: 10.1016/j.apcatb.2016.11.057 [79] 刘同同. BiOBr基光催化材料的制备及性能研究[D]. 太原: 太原理工大学, 2020. LIU T T. Preparation and properties of BiOBr based photocatalytic materials[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese).
[80] HE F, LU Z Y, SONG M S, et al. Selective reduction of Cu2+ with simultaneous degradation of tetracycline by the dual channels ion imprinted POPD-CoFe2O4 heterojunction photocatalyst [J]. Chemical Engineering Journal, 2019, 360: 750-761. doi: 10.1016/j.cej.2018.12.034 [81] 施欢贤. 新型铋系可见光复合光催化体系的构建及其杀灭E. coli性能研究[D]. 西安: 西北大学, 2020. SHI H X. Construction of novel bismuth-based visible light composite photocatalytic system and its application for E. coli disinfection[D]. Xi'an: Northwest University, 2020 (in Chinese).
[82] LIU Y, KONG J J, YUAN J L, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation [J]. Chemical Engineering Journal, 2018, 331: 242-254. doi: 10.1016/j.cej.2017.08.114 [83] LI S J, HU S W, XU K B, et al. Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts [J]. Journal of Colloid and Interface Science, 2017, 504: 561-569. doi: 10.1016/j.jcis.2017.06.018 [84] BEHERA A, KANDI D, MARTHA S, et al. Constructive interfacial charge carrier separation of a p-CaFe2O4@n-ZnFe2O4 heterojunction architect photocatalyst toward photodegradation of antibiotics [J]. Inorganic Chemistry, 2019, 58(24): 16592-16608. doi: 10.1021/acs.inorgchem.9b02610 [85] ACHARYA L, NAYAK S, PATTNAIK S P, et al. Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride [J]. Journal of Colloid and Interface Science, 2020, 566: 211-223. doi: 10.1016/j.jcis.2020.01.074 [86] MA C C, LEE J, KIM Y, et al. Rational design of α-Fe2O3 nanocubes supported BiVO4 Z-scheme photocatalyst for photocatalytic degradation of antibiotic under visible light [J]. Journal of Colloid and Interface Science, 2021, 581: 514-522. doi: 10.1016/j.jcis.2020.07.127 [87] XIAO T T, TANG Z, YANG Y, et al. in situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics [J]. Applied Catalysis B:Environmental, 2018, 220: 417-428. doi: 10.1016/j.apcatb.2017.08.070 [88] CAI T, ZENG W G, LIU Y T, et al. A promising inorganic-organic Z-scheme photocatalyst Ag3PO4/PDI supermolecule with enhanced photoactivity and photostability for environmental remediation [J]. Applied Catalysis B:Environmental, 2020, 263: 118327. doi: 10.1016/j.apcatb.2019.118327 [89] YIN H F, CAO Y, FAN T L, et al. in situ synthesis of Ag3PO4/C3N5 Z-scheme heterojunctions with enhanced visible-light-responsive photocatalytic performance for antibiotics removal [J]. Science of the Total Environment, 2021, 754: 141926. doi: 10.1016/j.scitotenv.2020.141926 [90] ZHANG Z Z, PAN Z W, GUO Y F, et al. In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi7O9I3/g-C3N4 and high efficient degradation of antibiotic under visible light [J]. Applied Catalysis B:Environmental, 2020, 261: 118212. doi: 10.1016/j.apcatb.2019.118212 [91] CHEN Y S, CRITTENDEN J C, HACKNEY S, et al. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst [J]. Environmental Science & Technology, 2005, 39(5): 1201-1208. [92] ZHAO Q, WANG J L, LI Z P, et al. Heterostructured graphitic-carbon-nitride-nanosheets/copper(I) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics [J]. Separation and Purification Technology, 2020, 250: 117238. doi: 10.1016/j.seppur.2020.117238 [93] HUANG Y C, FAN W J, LONG B, et al. Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions [J]. Applied Catalysis B:Environmental, 2016, 185: 68-76. doi: 10.1016/j.apcatb.2015.11.043 [94] LI S J, CHEN J L, HU S W, et al. A novel 3D Z-scheme heterojunction photocatalyst: Ag6Si2O7 anchored on flower-like Bi2WO6 and its excellent photocatalytic performance for the degradation of toxic pharmaceutical antibiotics [J]. Inorganic Chemistry Frontiers, 2020, 7(2): 529-541. doi: 10.1039/C9QI01201J [95] LI S J, XUE B, WANG C C, et al. Facile fabrication of flower-like BiOI/BiOCOOH p-n heterojunctions for highly efficient visible-light-driven photocatalytic removal of harmful antibiotics [J]. Nanomaterials (Basel, Switzerland), 2019, 9(11): 1571. doi: 10.3390/nano9111571 [96] HUANG L Y, YANG L, LI Y P, et al. P-n BiOI/Bi3O4Cl hybrid junction with enhanced photocatalytic performance in removing methyl orange, bisphenol A, tetracycline and Escherichia coli [J]. Applied Surface Science, 2020, 527: 146748. doi: 10.1016/j.apsusc.2020.146748 [97] TANG T, YIN Z L, CHEN J R, et al. Novel p-n heterojunction Bi2O3/Ti3+-TiO2 photocatalyst enables the complete removal of tetracyclines under visible light [J]. Chemical Engineering Journal, 2021, 417: 128058. doi: 10.1016/j.cej.2020.128058 [98] LI S J, XUE B, CHEN J L, et al. Constructing a plasmonic p-n heterojunction photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently removing broad-spectrum antibiotics [J]. Separation and Purification Technology, 2021, 254: 117579. doi: 10.1016/j.seppur.2020.117579 [99] SHI W L, LI M Y, HUANG X L, et al. Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation [J]. Chemical Engineering Journal, 2020, 394: 125009. doi: 10.1016/j.cej.2020.125009 [100] YE L Q, SU Y R, JIN X L, et al. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms [J]. Environmental Science:Nano, 2014, 1(2): 90-112. doi: 10.1039/c3en00098b [101] YAN M, HUA Y Q, ZHU F F, et al. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics [J]. Applied Catalysis B:Environmental, 2017, 202: 518-527. doi: 10.1016/j.apcatb.2016.09.039 [102] SHEN X P, WU S K, ZHAO H, et al. Synthesis of single-crystalline Bi2O3 nanowires by atmospheric pressure chemical vapor deposition approach [J]. Physica E:Low-Dimensional Systems and Nanostructures, 2007, 39(1): 133-136. doi: 10.1016/j.physe.2007.02.001 [103] KOTHE T, PLUMERÉ N, BADURA A, et al. Combination of A Photosystem 1-based photocathode and a Photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications [J]. Angewandte Chemie International Edition, 2013, 52(52): 14233-14236. doi: 10.1002/anie.201303671 [104] GONG Y Y, WU Y J, XU Y, et al. All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic waste water [J]. Chemical Engineering Journal, 2018, 350: 257-267. doi: 10.1016/j.cej.2018.05.186 [105] HUANG S S, WANG G D, LIU J Q, et al. A novel CuBi2O4/BiOBr direct Z-scheme photocatalyst for efficient antibiotics removal: Synergy of adsorption and photocatalysis on degradation kinetics and mechanism insight [J]. ChemCatChem, 2020, 12(17): 4431-4445. doi: 10.1002/cctc.202000634 [106] LIU X L, ZHANG Q Z, MA D L. Advances in 2D/2D Z-scheme heterojunctions for photocatalytic applications [J]. Solar RRL, 2021, 5(2): 2000397. doi: 10.1002/solr.202000397 [107] QI K Z, ZADA A, YANG Y, et al. Design of 2D-2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant [J]. Research on Chemical Intermediates, 2020, 46(12): 5281-5295. doi: 10.1007/s11164-020-04262-0 [108] ANDREOZZI R, CAPRIO V, INSOLA A, et al. Advanced oxidation processes (AOP) for water purification and recovery [J]. Catalysis Today, 1999, 53(1): 51-59. doi: 10.1016/S0920-5861(99)00102-9 [109] KUMAR A, SHARMA G, KUMARI A, et al. Construction of dual Z-scheme g-C3N4/Bi4Ti3O12/Bi4O5I2 heterojunction for visible and solar powered coupled photocatalytic antibiotic degradation and hydrogen production: Boosting via I−/I3− and Bi3+/Bi5+ redox mediators [J]. Applied Catalysis B:Environmental, 2021, 284: 119808. doi: 10.1016/j.apcatb.2020.119808 [110] YOU J K, XIAO M, WANG Z L, et al. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction [J]. Journal of CO2 Utilization, 2022, 55: 101817. doi: 10.1016/j.jcou.2021.101817 [111] 袁金华. 光催化降解和光降解氯代乙酸的研究[D]. 兰州: 兰州大学, 2008. YUAN J H. Studies on photocatalytic degradation and photolytic degradation of chloroacetic acids[D]. Lanzhou: Lanzhou University, 2008 (in Chinese).
[112] DENG Y, ZHAO R Z. Advanced oxidation processes (AOPs) in wastewater treatment [J]. Current Pollution Reports, 2015, 1(3): 167-176. doi: 10.1007/s40726-015-0015-z [113] KISELEV V M, KISLYAKOV I M, BURCHINOV A N. Generation of singlet oxygen on the surface of metal oxides [J]. Optics and Spectroscopy, 2016, 120(4): 520-528. doi: 10.1134/S0030400X16040123 [114] ZHU X D, WANG Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2 [J]. Chemosphere, 2013, 92(8): 925-932. doi: 10.1016/j.chemosphere.2013.02.066 [115] CHEN X Y, XUE X L, GONG X W. A novel Z-scheme porous g-C3N4 nanosheet/Ag3PO4 photocatalyst decorated with N-doped CDs for high efficiency removal of antibiotics [J]. Dalton Transactions (Cambridge, England:2003), 2020, 49(16): 5205-5218. doi: 10.1039/D0DT00408A [116] CHEN Q H, WU S N, XIN Y J. Synthesis of Au-CuS-TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline [J]. Chemical Engineering Journal, 2016, 302: 377-387. doi: 10.1016/j.cej.2016.05.076 [117] 黄成群, 徐彦芹, 曹渊. 介孔材料负载光催化剂在废水处理中的应用 [J]. 工业水处理, 2010, 30(9): 20-24. doi: 10.3969/j.issn.1005-829X.2010.09.005 HUANG C Q, XU Y Q, CAO Y. Application of photocatalyst supported by mesoporous material to wastewater treatment [J]. Industrial Water Treatment, 2010, 30(9): 20-24(in Chinese). doi: 10.3969/j.issn.1005-829X.2010.09.005
[118] ZHANG S Q, ZHANG Z F, LI B, et al. Hierarchical Ag3PO4@ZnIn2S4 nanoscoparium: An innovative Z-scheme photocatalyst for highly efficient and predictable tetracycline degradation [J]. Journal of Colloid and Interface Science, 2021, 586: 708-718. doi: 10.1016/j.jcis.2020.10.140 [119] 曹驰程, 王友权, 章奇, 等. 典型湖泊天然有机质与四环素的相互作用 [J]. 湖泊科学, 2018, 30(4): 1004-1011. doi: 10.18307/2018.0413 CAO C C, WANG Y Q, ZHANG Q, et al. Interactions of tetracycline and dissolved organic matter from freshwater lakes [J]. Journal of Lake Sciences, 2018, 30(4): 1004-1011(in Chinese). doi: 10.18307/2018.0413
[120] ZHU R C, DIAZ A J, SHEN Y, et al. Mechanism of humic acid fouling in a photocatalytic membrane system [J]. Journal of Membrane Science, 2018, 563: 531-540. doi: 10.1016/j.memsci.2018.06.017 [121] CHEN J Y, DONG X, XIN Y Y, et al. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure [J]. Aquatic Toxicology, 2011, 101(3/4): 493-499.