-
2022年5月,国务院办公厅出台了《新污染物治理行动方案》,将抗生素列为新污染物之一,打响了抗生素环境污染治理攻坚战. 抗生素在人和动物的疾病防治中具有重要作用,并作为生长促进剂广泛用于农业、畜牧业和水产养殖等行业[1]. 其中,磺胺甲噁唑(Sulfamethoxazole,SMX)具有成本低、抗菌广谱等优点,是应用最广泛的抗生素之一[2]. 由于SMX的使用量大、残留性强,在废水出水、地表水甚至是饮用水中均有检出,浓度最高可达7910 ng·L−1[3 − 4],对水生生态系统和人类健康产生危害[5]. 此外,预计到2050年,由环境中抗生素长期污染导致的抗性微生物和抗性基因的传播与扩散将威胁全球1000万人的生命[6]. 因此,开发切实有效的SMX深度去除技术对降低水体中抗生素危害风险具有重要意义.
高级氧化技术(AOPs)已被证明可以产生具有高效活性的自由基,对降解抗生素具有巨大潜力[7]. 其中基于过硫酸盐的高级氧化技术可以产生氧化电位高、半衰期长、pH适用范围广的硫酸根自由基(SO4·−)而被广泛关注[8 − 10]. 过渡金属(如钴、铜、铁、锌等)常用于活化过一硫酸盐(PMS),但高价金属的持续积累将会阻碍污染物的降解[9]. 所以为了克服氧化还原循环的局限性,近年来提出了双反应中心的方案. 基于此,本文将钴与铜二者相结合,制备钴铜(Co-Cu)双金属氧化物催化剂协同活化PMS,加速水中抗生素类新污染物的去除.
综上,本文拟采用Co-Cu/PMS体系处理水中的SMX,考察PMS浓度、Co-Cu投加量、水中常见的无机阴离子(Cl−、HCO3−、SO42−)及富里酸(FA)对SMX去除率的影响,探究Co-Cu/PMS体系降解SMX的主要活性氧物种(ROS).
Co-Cu双金属氧化物活化过一硫酸盐去除水中磺胺甲噁唑
Enhanced removal of sulfamethoxazole via peroxymonosulfate activated by the Co-Cu bimetallic oxide
-
摘要: 采用钴铜双金属氧化物(Co-Cu)为催化剂,活化过一硫酸盐(PMS)降解水中的磺胺甲噁唑(SMX). 使用场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)对催化剂的形貌和元素组成进行表征. 考察了催化剂和PMS浓度、无机阴离子和富里酸(FA)对Co-Cu/PMS体系降解SMX的影响. 结果表明,当pH为7.0时,在催化剂用量为50 mg·L−1,PMS浓度为0.5 mmol·L−1条件下,50 mg·L−1的SMX在30 min内去除率为95.6%,增加PMS浓度或提高催化剂用量均可加快SMX的降解速率. 水中FA与HCO3−对SMX的去除率有一定的抑制作用,而Cl−和SO42−对反应无影响. 淬灭实验与电子顺磁共振(EPR)结果显示,硫酸根自由基(SO4·−)和单线态氧(1O2)为Co-Cu/PMS体系中主要的活性氧物种(ROS). XPS分峰结果表明,在钴铜双反应活性中心中Cu+/Cu2+循环是活化PMS的主要成分.Abstract: Co-Cu bimetallic oxide was used as a catalyst for the activation of peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX) in water. The morphology and elemental composition of the as-prepared catalyst were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). In the catalytic system, 95.6% of SMX was removed within 30 min when the pH was 7.0, the catalyst dosage was 50 mg·L−1, and the PMS concentration was 0.5 mmol·L−1. The removal of SMX was accelerated with increasing PMS concentration and catalyst dosage. FA and HCO3− had an inhibitory effect on the removal of SMX, while Cl− and SO42− exhibited no significant impact. Quenching experiments and electron paramagnetic resonance (EPR) results indicated that sulfate radicals (SO4·−) and singlet oxygen (1O2) were the main reactive oxygen species (ROS) in the Co-Cu/PMS system. The XPS peak results indicated that the Cu+/Cu2+ cycle played an important role in the PMS activation of the Co-Cu.
-
Key words:
- Co-Cu /
- peroxymonosulfate /
- sulfamethoxazole /
- ROS.
-
-
[1] YANG X C, ZHONG Q M, LIANG S, et al. Global supply chain drivers of agricultural antibiotic emissions in China[J]. Environmental Science & Technology, 2022, 56(9): 5860-5873. [2] PENG Y H, XIE G S, SHAO P H, et al. A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity[J]. Applied Catalysis B: Environmental, 2022, 310: 121345. doi: 10.1016/j.apcatb.2022.121345 [3] LIN T, YU S L, CHEN W. Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China[J]. Chemosphere, 2016, 152: 1-9. doi: 10.1016/j.chemosphere.2016.02.109 [4] PENG X Z, WANG Z D, KUANG W X, et al. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China[J]. Science of the Total Environment, 2006, 371(1/2/3): 314-322. [5] CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. doi: 10.1016/j.cej.2020.124904 [6] HU Y, WEI X P, ZHU Q Q, et al. COVID-19 pandemic impacts on humans taking antibiotics in China[J]. Environmental Science & Technology, 2022, 56(12): 8338-8349. [7] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x [8] YU Y, LI N, LU X K, et al. Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: Performance and internal mechanism[J]. Journal of Hazardous Materials, 2022, 421: 126735. doi: 10.1016/j.jhazmat.2021.126735 [9] XIE Z Q, DIONYSIOU D D, LUO S, et al. Dual-reaction center catalyst based on common metals Cu-Mg-Al for synergistic peroxymonosulfate adsorption-activation in Fenton-like process[J]. Applied Catalysis B: Environmental, 2023, 327: 122468. doi: 10.1016/j.apcatb.2023.122468 [10] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用[J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102 GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation[J]. Environmental Chemistry, 2018, 37(11): 2489-2508 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
[11] XU M J, LI J, YAN Y, et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles[J]. Chemical Engineering Journal, 2019, 369: 403-413. doi: 10.1016/j.cej.2019.03.075 [12] WANG S Z, LIU Y, WANG J L. Peroxymonosulfate activation by Fe-Co-O-codoped graphite carbon nitride for degradation of sulfamethoxazole[J]. Environmental Science & Technology, 2020, 54(16): 10361-10369. [13] WANG S Z, LIU H Y, WANG J L. Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co9S8 rods (Co/Co9S8@N-S-O-C) as efficient activator of peroxymonosulfate for sulfamethoxazole degradation[J]. Journal of Hazardous Materials, 2020, 387: 121669. doi: 10.1016/j.jhazmat.2019.121669 [14] WANG S Z, WANG J L. Degradation of sulfamethoxazole using peroxymonosulfate activated by cobalt embedded into N, O co-doped carbon nanotubes[J]. Separation and Purification Technology, 2021, 277: 119457. doi: 10.1016/j.seppur.2021.119457 [15] ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. doi: 10.1016/j.cej.2019.123298 [16] SHAO S, QIAN L, ZHAN X, et al. Transformation and toxicity evolution of amlodipine mediated by cobalt ferrite activated peroxymonosulfate: Effect of oxidant concentration[J]. Chemical Engineering Journal, 2020, 382: 123005. doi: 10.1016/j.cej.2019.123005 [17] ZHAO C, MENG L H, CHU H Y, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: Singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B: Environmental, 2023, 321: 122034. doi: 10.1016/j.apcatb.2022.122034 [18] ZHANG W, ZHANG S Z, MENG C C, et al. Nanoconfined catalytic membranes assembled by cobalt-functionalized graphitic carbon nitride nanosheets for rapid degradation of pollutants[J]. Applied Catalysis B: Environmental, 2023, 322: 122098. doi: 10.1016/j.apcatb.2022.122098 [19] PENG J B, CHANG Y, WANG Z X, et al. Amlodipine removal via peroxymonosulfate activated by carbon nanotubes/cobalt oxide (CNTs/Co3O4) in water[J]. Environmental Science and Pollution Research, 2022, 29(8): 11091-11100. doi: 10.1007/s11356-021-16399-5 [20] ZHANG H X, XIE C H, CHEN L, et al. Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system[J]. Water Research, 2023, 229: 119392. doi: 10.1016/j.watres.2022.119392 [21] 蒋梦迪, 张清越, 季跃飞, 等. 热活化过硫酸盐降解三氯生[J]. 环境科学, 2018, 39(4): 1661-1667. doi: 10.13227/j.hjkx.201707201 JIANG M D, ZHANG Q Y, JI Y F, et al. Degradation of triclosan by heat activated persulfate oxidation[J]. Environmental Science, 2018, 39(4): 1661-1667 (in Chinese). doi: 10.13227/j.hjkx.201707201
[22] 彭建彪, 贺冰冰, 顾梦瑶, 等. 磁性氧化石墨烯活化过一硫酸盐去除水中阿托伐他汀[J]. 环境化学, 2020, 39(10): 2869-2877. doi: 10.7524/j.issn.0254-6108.2020060702 PENG J B, HE B B, GU M Y, et al. Efficient removal of atorvastatin in aqueous solution via peroxymonosulfate activated by magnetic graphene oxide[J]. Environmental Chemistry, 2020, 39(10): 2869-2877 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020060702
[23] 余诗慧, 杨娇娇, 牛夕阳, 等. 改性FeCo2O4活化PMS降解水中2, 4-二氯苯氧乙酸[J]. 环境化学, 2023, 42(5): 1717-1726. doi: 10.7524/j.issn.0254-6108.2021121303 YU S H, YANG J J, NIU X Y, et al. Modified FeCo2O4 to activate PMS to degrade 2, 4-dichlorophenoxyacetic acid in water[J]. Environmental Chemistry, 2023, 42(5): 1717-1726 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021121303
[24] ZHOU Y B, ZHANG Y L, HU X M. Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4− x spinel for 2, 4-dichlorophenol removal: Singlet oxygen-dominated nonradical process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124568. doi: 10.1016/j.colsurfa.2020.124568 [25] LIU L, HAN C J, DING G F, et al. Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping[J]. Chemical Engineering Journal, 2022, 450: 138302. doi: 10.1016/j.cej.2022.138302 [26] SONG Q Y, FENG Y P, WANG Z, et al. Degradation of triphenyl phosphate (TPhP) by CoFe2O4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms[J]. The Science of the Total Environment, 2019, 681: 331-338. doi: 10.1016/j.scitotenv.2019.05.105