-
毒驾(DUID)是指车辆驾驶人员吸食、注射鸦片、海洛因、甲基苯丙胺、吗啡、大麻、可卡因,以及国家规定管制的其他能够使人形成瘾癖的麻醉药品和精神药品后驾驶车辆,并且血液、唾液中毒品含量达到或超过规定阈值的行为[1]. 驾驶员在滥用药物后往往会出现精神亢奋状态,严重削弱驾驶能力乃至丧失判断力,极易发生交通事故. 《2022年世界毒品报告》[2]显示,2020年全球吸毒人数约为2.84亿,比2010年增加26%,吸毒人数增加导致吸食毒品后驾驶机动车辆的行为频发,为道路交通安全带来巨大隐患. 德国联邦统计局报告显示,2021年有
2409 起车祸事故受到毒品影响[3]. 在我国,因毒驾引发的案件逐年增加.目前美国、英国、挪威和德国等针对毒驾行为形成了较为成熟的法律体系[4 − 5],有些国家采取标准阈值为零的“零容忍”定罪标准,即检测到药物就违法,有些国家采取设置一定阈值的“非零容忍”定罪标准,检测到药物浓度达到一定剂量才裁定为违法. 美国将影响驾驶能力的药物分为三类,其中包括美国《管控药物法》中涵盖的常见毒品、处方药和非处方药[6],法律规定“基于效果法”和“自证法”两种毒驾定罪标准[7]. 英国针对8种毒品和9种药品设定了浓度阈值,以“非零容忍”标准定罪,其他种类毒品则按照“损害效果”标准定罪[8]. 挪威规定了20种毒品的血液浓度阈值,并对其中13种毒品实施分级制裁[9]. 德国在《德国刑法典》第315条和第316条中规制了吸毒驾驶行为[10]. 我国目前对吸毒后驾驶行为以交通肇事罪或危险方法危害公共安全罪处罚,在《车辆驾驶人员体内毒品含量阈值与检验》中规定了体内毒品的初步检测阈值和实验室检测阈值[1],但毒驾尚未纳入刑法.
世界上许多实验室针对毒驾中的药物及影响进行了研究,通过完善毒驾现场物证采集技术,建立复杂生物样品中药物的现场快速检测方法,为毒驾执法提供科技支撑. 本文在查阅国内外毒驾相关研究的基础上,综述了毒驾现场物证采集技术和检测技术的研究进展,以期为毒驾的现场执法及认定提供参考依据.
-
毒驾现场物证应满足采样程序便捷,前处理操作简单,毒驾现场常见物证主要有血液、口腔液、呼气颗粒物和尿液等生物检材.
-
血液是人体内毒品检测的金标准. 血液中药毒物浓度与大脑结构中的活性成分密切相关[11],也与驾驶行为和交通事故损伤程度有关,人体中其他毒驾物证检测方法的建立往往需要比较与血液检测结果的相关性,也因此常被作为口腔液、尿液检测之后的补充检测. 药物在血液中的检测时间窗口通常为几小时至48小时,具体取决于药物种类和服用剂量,例如,大麻和海洛因的检测窗口约为几小时至24 h,可卡因约为1—2 d,安非他明类药物约为4—48 h等. 我国毒驾检测标准规定血液中常见毒品及其代谢物的含量阈值为2—50 ng·mL−1[1].
-
尿液在滥用药物及其代谢物分析中应用广泛,尿液检测的主要目标物为代谢物,其在尿液中停留时间较长,因此尿液作为检测基质提供了比血液更宽的检测窗口期. Niedbala等[14]研究发现吸食大麻毒品数周后,吸食者尿液中仍能检出大麻主要代谢物四氢大麻酚酸. 因此,尿液检测的阳性结果仅能用于表明吸食者在一定时间内使用过毒品,若要确定其驾驶前是否吸食毒品,还需根据毒品的代谢物特征进行定量检测. 此外,尿液中的药物浓度和检出时间还会受到尿液pH值、药物吸食频率、采样时间和尿液稀释程度等多种因素的影响. 在我国,毒驾检测标准中规定尿液里常见毒品初步检测的含量阈值为50—
1000 ng·mL−1[1]. 相比于其他生物检材,尿液样本采集时易被其他物质污染,或因混入其他液体导致成分稀释,使检测结果出现偏差[12]. -
口腔液(Oral Fluid)包括唾液、牙龈缝隙、鼻腔和支气管分泌物以及细菌、细胞元素、电解质、免疫球蛋白、蛋白质和食物残渣等其他成分,是当前毒驾检测中最具潜力的检材,目前澳大利亚、德国、比利时、西班牙和英国等国家已将口腔液应用于毒驾现场药物检测[15 − 16]. 大多数药物及其代谢物以被动扩散的方式从血液进入口腔液,影响口腔液中药物浓度的因素主要包括口腔液组成、流速、pH值、药物pKa、蛋白质结合、亲脂性、空间构型和分子大小等[17 − 18]. 通常苯丙胺、可卡因和阿片类碱性药物在口腔液中的浓度更高,酸性药物在口腔液中的浓度较低. 由于毒品大多为亲脂性化合物,而亲脂性药物比亲水性药物更容易从血液扩散进口腔液,因此原药为口腔液检材的主要目标物. 口腔液中常见滥用药物的检测窗口一般在24小时内[17],因此可有效判断驾驶人近期是否滥用毒品[19]. 我国毒驾检测标准中规定,口腔液中常见毒品初步检测的含量阈值为25—100 ng·mL−1,而实验室检测含量阈值为1—25 ng·mL−1[1].
口腔液作为毒驾现场物证具有以下优势,一是口腔液中的药物浓度与血液中的药物浓度具有较高的相关性[20 − 22],进而与毒驾行为产生联系. 二是口腔液是非侵入性采集,无需同性工作者陪同采集,不存在尿液样本采集时的“隐私”问题,且难以造假. 口腔液的检测目前有一定局限性,一是不同药物在口腔液与血液之间的被动扩散程度不同,低浓度药物检测较为困难. 二是通过咳痰、流涎或咽拭子采集方式会影响口腔液的pH值,进而影响药物检测结果. 三是口腔液检材采集过程易引起受试者焦虑情绪[23],抑制唾液腺分泌会导致样本量减少.
-
人体呼出气中除含有已被广泛研究的挥发性有机物外,还含有一定数目的气溶胶颗粒物(0.001—4.644 个·mL−1),也称为呼气颗粒物(Exhaled breath particles),包括呼吸过程产生的内源性颗粒物和人体吸入的外源性颗粒物[24 − 26],其中内源性颗粒物来源于呼吸道气道壁的内衬液,成分主要有含氮活性物质、蛋白质、代谢物等[27]. 呼气颗粒物可用于滥用药物检测、疾病诊断和环境暴露评价等研究[28]. Beck等[29 − 30]先后用固相萃取柱和C18吸附膜盘收集人体呼气颗粒物以检测甲基苯丙胺、苯丙胺和美沙酮;比较了不同吸附剂对呼气颗粒物中美沙酮的影响[31]. 呼气颗粒物中药物检测窗口较短,吸食大麻后,四氢大麻酚可在15 min至3 h范围内通过呼气颗粒物检出[32 − 33].
呼气颗粒物采样方便,无需专业医护人员,图1为用于呼气颗粒物的商用采样装置和采样图[34],采样仅需2 min. 呼气颗粒物的基质比血液或尿液更干净,可简化前处理和检测过程,其检测所需时间与口腔液相似[35]. 目前呼气颗粒物作为毒驾现场物证存在一定局限性,一是易受外源性颗粒物污染的风险;二是样本量少且目标物含量低,对仪器灵敏度要求高;三是尚未建立呼气颗粒物中药物浓度与血液中药物浓度的量化关系,未来研究重点为分析比较两种基质的检测结果,以评估呼气颗粒物用于毒驾现场检测的可靠性. 此外,毛发、指甲等常见生物检材,因其检测窗口期较长,目前较少用于毒驾现场物证的筛查.
-
毒驾现场物证传统液体采样技术包括从人体内采集血液、尿液和口腔液等生物样本,血液采样通常是通过使用针头刺入静脉抽取血液来进行的;尿液则主要通过自然排尿方式采集,即在适当的卫生设施中由受检者自行收集尿样;口腔液采样则通过让受试者直接向玻璃瓶或聚丙烯试管中吐液,或利用吸附性材料从口腔内部吸取液体样本完成[36]. 这些传统采样方法存在诸多局限性,如血液采样的侵入性问题和尿液采样的隐私问题,样本的保存和运输过程也相对繁琐且易受到环境因素影响. 近年来,干燥微采样技术受到人们广泛关注,小体积的干燥样品具有前处理简便、溶剂消耗量少、室温储存和运输方便等优点[37 − 38],干燥样品可减缓了药物降解和代谢过程,从而增加其稳定性[39 − 40].
-
干基质斑点(Dried matrix spot,DMS)技术包括血液斑(DBS)、口腔液斑(DFS)和尿液斑(DUS)等,其传统操作过程是通过直接浸渍或滴加样品将小体积生物液体固定在特定的滤纸上,待样品扩散和干燥后,从纸上打孔出斑点,并使用液液萃取或固相萃取等提取方法提取目标物质,再通过液相色谱-质谱(LC-MS)、液相色谱-串联质谱(LC-MS/MS)和气相色谱-质谱(GC-MS)等进行分析. 目前,DMS分析的新方法已经出现[41],其中包括DMS的直接洗脱,在线解吸和自动分析等,这些新方法旨在通过无需手动打孔和自动提取样品来优化DMS分析. 图2为DBS卡的流动洗脱示意图,手动将DBS卡放入自动取样器的卡架上,机械臂会依次将DBS样品点插入自动进样器,将2.0 mm半径内的目标DBS样品点在洗脱下来,随后将洗脱液送入固相萃取装置[41].
DBS是最常用的DMS技术,将全血作为生物基质,被称为干血斑技术. 干血斑(DBS)无需静脉穿刺,能有效降低分析成本,具有生物危害风险低、样品储存和运输方便等优点[42],对于有问题的人群(例如,滥用者、精神病患者、儿童和老年人)[43],DBS法已成为一种友好的血液采集方法,在毒驾现场具有很好的应用潜力.
DBS检测的局限性在于斑点血的体积小(5—20 μL),当测定低浓度化合物时,需要非常精确的采样程序和高灵敏度的检测方法. 此外,DBS方法的血细胞比容(HCT,血细胞和血浆的容积比)水平具有不确定性,可能会影响定量测试结果,HCT与血液粘度成正比,当使用未知数量的血液时,必须为每个HCT值确定一个校正因子. 未来还需要建立至少两种生物基质(血浆/血清与DBS)中分析物浓度之间的关系,DBS才能够成为可靠的定量方法.
-
体积吸收微量采样技术(Volumetric absorptive microsampling,VAMS)最初是用于改进DBS采样技术[44],在采样体积的准确性、HCT的依赖性、样品预处理和装置自动化方面显著优于DBS. 目前也用于采集尿液和口腔液等生物检材[45]. VAMS装置如图3所示,主体部分是硬塑料手柄,手柄上配有采样尖端,能够收集特定体积的液体样品(10、20、30 μL). 采样时先用内标溶液浸泡VAMS装置尖端,尖端干燥后立即以45°角接触液体并保持2 s,随后将尖端从手柄上分离,待提取后进行样品检测[46].
VAMS除了具有DMS的优势外,还可以产生高重复性的干燥样品点,克服了干燥样品点在面积偏差和均匀性等方面的缺陷,被认为是DBS和其他微量取样技术的可行替代方案.
-
毒驾现场检测最初依赖于药物识别专家(drug recognition expert,DRE),他们通过评估驾驶者的行为、语言和生理状态识别驾驶人是否存在药物滥用行为,在毒驾管控初期发挥了重要作用[48],但该方法存在主观性高、效率低、药物识别范围有限等缺陷. 随后,许多便携式设备被开发用于毒驾现场物证检测,近年来,免疫分析、原位电离质谱、传感技术、毛细管电泳等快检技术的迅速发展和在毒品检测方面的应用普及,大大增强了毒驾检测的现场操作性、精确度以及高通量筛查能力.
-
免疫分析技术的检测基础是抗原抗体的特异性反应,其中侧流免疫层析技术无需昂贵的仪器设备,是一种快速、简单、便携的检测方法,根据标记物不同可分为胶体金法、荧光法等. Liu等[49]开发了基于金纳米颗粒(AuNPs)的侧流免疫分析试纸条(Lateral flow strip,LFS),通过比色信号检测口腔液中海洛因的水解产物6-单乙酰吗啡(6-MAM),当样品中含有6-MAM时,结合垫上的部分纳米金标记抗体与6-MAM结合,无法被T线捕获,未结合的抗体与T线上的6-MAM抗原结合产生信号,T线的信号强度与样品中6-MAM的浓度成反比. 该方法特异性好,灵敏度为4.0 ng·mL−1,检测总时长仅为3 min. Plouffe等[50]基于荧光侧流免疫分析法(LFA)检测口腔液中的四氢大麻酚(THC),口腔液样品与结合垫上荧光标记抗体反应,依次经过T线和C线,若样品中含有THC,则会在T线上产生荧光信号. 荧光标记可显著降低检测限,能精确检测出口腔液中大麻含量,该方法检测限为0.01 ng·mL−1,定量限为1 ng·mL−1. Hu等[51]建立了一种基于上转换荧光技术的侧流免疫分析法(UPT-LFA),用于口腔液中吗啡(Mop)和甲基苯丙胺(Met)的现场检测,无需对口腔液进行复杂的前处理,Mop和Met检测限分别为5 ng·mL−1和10 ng·mL−1,定量限分别为5—100 ng·mL−1和10—250 ng·mL−1,通过采用UPT-LFA和液相色谱质谱(LC-MS)分别检测50个模拟口腔液样本,研究发现,UPT-LFA操作更简便,检测速度更快. 图4为侧流免疫分析示意图.
目前用于毒驾现场物证检测的商用设备大多基于免疫分析原理,现场检测口腔液的商用设备主要有RapidSTAT®、DrugWipe®6S、Alere DDS®2、Securetec DrugWipe®5S、Dräger DrugTest®
5000 等,现场检测尿液的商用设备主要有DrugScreen®5TK、DrugScreen®7TR等,这些设备自动化程度高,操作简便快捷,可有效协助现场警务人员精准捕捉毒驾行为[52 − 53]. -
电化学传感技术利用电化学仪器作为信号转换器,将被测组分的浓度和电信号联系起来,实现化学物质的定量或半定量测量,具有灵敏度高、选择性好、响应快等优点,目前已广泛应用于THC、N-苄基取代苯乙胺(NBOMes)和MDMA等毒品的定性定量分析.
伏安法是电化学传感技术中最常用的方法,其中测量电流是电极电位的函数,主要包括循环伏安法(CV)、微分脉冲伏安法(DPV)和方波伏安法(SWV). Mishra等[54]开发了一种可穿戴的环形电化学传感平台,可同时检测口腔液中的THC和酒精,如图5所示,该传感系统结构由4个电极组成,从左至右分别是THC工作电极、Ag/AgCI参比电极(RE)、酒精工作电极和碳对电极(CE),其中THC的检测信号通过伏安法获得,在3 min内完成,LOD为0.5 μmol·L−1. Narang等[55]使用氧化锌纳米棒电极开发了一种电化学纸分析装置(EPAD),用于检测口腔液、汗液和尿液中的MDMA,该方法灵敏度高,检测速度快,特异性强,检出限为0.1 μmol·L−1. Naomi等[56]基于循环伏安法和方波伏安法,采用无需化学修饰的碳糊电极和丝网印刷碳电极(SPCE)检测口腔液中的MDMA,该方法线性范围为1.75—19.98 μg·mL−1,LOD为1.75 μg·mL−1,LOQ为5.82 μg·mL−1.
-
原位电离质谱技术(AIMS)可在常温常压下直接分析样品,无需或仅需极少样品制备,常用电离技术有解吸电喷雾电离(DESI)、实时直接分析(DART)、纸喷雾电离(PSI)、低温等离子体(LTP)等. Vasiljevic等[57]使用聚醚酮(PEEK)网格开发了一种新型固相微萃取传输装置(SPME-TM),与实时直接分析串联质谱(DART-MS/MS)联用可快速检测毒驾现场口腔液和尿液中滥用药物,LOD为0.5 ng·mL−1,PEEK网格性质稳定、耐高温,具有良好的生物相容性. 次年,该课题组[58]将此技术用于毒驾现场口腔液和血液中滥用药物的定量检测,口腔液的LOQ为0.5—10 ng·mL−1,血液的LOQ为2.5—25 ng·mL−1,该方法将AIMS的高灵敏度和高通量优势与SPME-TM相结合,能够快速、可靠检测口腔液等小体积样品中的滥用药物,重复性高,准确性好. 图6为SPME-TM与DART-MS/MS检测口腔液和血液示意图.
Wang等[59]使用热辅助解吸-低温等离子体探针质谱法(TD-LTP-MS)快速检测口腔液中的新精神活性物质,热辅助解吸可显著提高信号强度,其LOD为3.0—15.2 ng·mL−1,相比于DESI和DART,LTP结构更简单,试剂消耗更少. 图7为TD-LTP-MS检测口腔液示意图. Kang等[60]使用纸质毛细管喷雾和微型双线性离子阱质谱仪检测尿液中多种滥用药物,该方法线性范围为100—
5000 ng·mL−1,已应用于检测MDMA和Met成瘾者的真实尿液样本. -
毛细管电泳(CE)技术具有操作简单、检测速度快、分离效率高、样品用量少等优点. Saar-Reismaa等[61]使用毛细管电泳技术结合LED荧光检测器定量检测口腔液中三种苯丙胺衍生物(MDA、MDMA、MDEA),仅需15 min即可完成口腔液样品收集、前处理和分析,该方法LOD为3 ng·mL−1,LOQ为6 ng·mL−1,是一种有前途、可靠的毒驾现场滥用药物检测方法. 次年,课题组基于配有紫外荧光检测器(FD)的便携式毛细管电泳仪建立了口腔液中可卡因、可卡乙碱和5种苯丙胺衍生物的检测方法,将其应用于毒驾现场128个实际样品分析,并使用HPLC-MS进行验证,两种方法检测结果一致,表明该方法可靠性高,性能良好,可有效辅助毒驾现场物证快速检测[62]. 两年后,课题组再次研发了与便携式毛细管电泳仪兼容的全自动样品前处理装置,用于口腔液中5种滥用药物的检测,该装置操作简便,液体用量少,进一步提高了毛细管电泳技术在毒驾现场的检测能力. 图8为全自动口腔液提取装置示意图[63].
-
毒驾严重威胁我国道路交通安全与社会公共安全. 规范的毒品检测程序包括现场检测、实验室检测和实验室复检,高效的毒驾现场物证采集和检测能够更快速、准确筛查可疑毒驾行为,提高现场执法效率. 目前,毒驾现场物证包括口腔液、呼气颗粒物、尿液和血液;毒驾现场采集技术中最具优势的是干基质斑点和体积吸收微量采样技术;毒驾现场物证检测技术有免疫分析技术、原位电离质谱技术、电化学传感技术和毛细管电泳技术等.
未来研究可从以下几方面展开:(1)口腔液和呼气颗粒物现场采集是路边筛查最便捷的方法,可有效认定驾驶人近期是否滥用毒品,今后将不断提高现场检测的灵敏度,研发更多呼气颗粒物的现场检测方法. (2)基于抗体的免疫分析方法受到pH值、浓度和温度等条件影响易发生交叉反应,为提高其准确性,一是通过靶向功能基团、结合信号标签等方法优化抗体制备过程,获得高质量抗体;二是使用适配体或分子印迹聚合物替代抗体,弥补抗体制备周期长等固有缺陷;三是将免疫分析技术与光学和电化学传感策略相结合,通过信号放大技术进一步提高检测灵敏度. (3)为了增加可穿戴式电化学传感器对滥用药物的检测范围,可通过改善电化学传感器材料和电源系统,引入pH值和温度等传感系统来提高电化学传感器性能,从而增强其检测稳定性. (4)原位电离质谱技术易受环境和样本条件影响,因此需要现场采集更多样本,以确保极端天气和不同环境下仪器的灵敏度和可靠性;不断开发生物兼容性好的前处理和自动进样装置,实现与原位电离质谱联用,以提高分析效率和检测准确性. (5)进一步拓展便携式毛细管电泳技术的应用范围,实现对呼气颗粒物、汗液等样品基质中滥用药物的现场检测,将毛细管电泳仪与其配套的全自动样品前处理装置耦合成便携式仪器,实现高效率现场检测. (6)不断完善毒驾现场物证采集技术和检测技术,开发驾驶员药物损伤评估方法,提高现场检测效率和准确度,降低漏检错检概率,精准辅助现场警务人员捕捉毒驾行为.
毒驾现场物证采集与检测技术进展
Advances in collection and detection technologies of evidence for driving under the influence of drugs
-
摘要: 近年来,吸毒人数与毒驾案件的增长严重危害道路交通安全与社会公共安全. 现场物证采集与检测技术是毒驾管控和查处的重要工作,相关制度体系要求在现场执法过程中应明确证据收集和认定依据,建立复杂生物样品中滥用药物的快速筛查方法. 本文介绍了毒驾现场中血液、尿液、人体口腔液和呼气颗粒物等常见物证,总结了毒驾现场物证采集的干基质斑点技术和体积吸收微量采样技术,综述了免疫分析技术、原位电离质谱技术、电化学传感技术和毛细管电泳技术等毒驾现场物证检测技术的研究进展,以期为毒驾的现场执法及认定提供参考依据.Abstract: In recent years, the increasing cases of drug abuse and driving under the influence of drugs (DUID) cases pose a severe threat to road traffic safety and societal security. On-site physical evidence collection and detection technologies are crucial for the control and investigation of DUID. The relevant institutional system necessitates clear guidelines for evidence gathering and identification during on-site law enforcement operations, as well as the establishment of rapid screening methods for the detection of substance abuse in complex biological samples. This paper introduces the common physical evidence at the scene of DUID, such as blood, urine, human oral fluids and exhaled breath particles, summarizes the dry matrix spot technology (DMS) and volumetric absorption microsampling technology (VAMS) for the collection of physical evidence at DUID scenes, and provides an overview of research advancements in detection techniques such as immunoassay, in-situ ionization mass spectrometry, electrochemical sensing and capillary electrophoresis, aiming to provide references basis for on-site law enforcement and identification of DUID.
-
-
图 1 呼气颗粒物采样装置SensAbues AB的采样图[34]
Figure 1. Sampling procedure of exhaled breath particles sampling device SensAbues AB
图 2 (a) 洗脱前的斑点,(b) DBS卡的流动洗脱图,(c) 洗脱后的斑点[41].
Figure 2. (a) A spot before elution, (b) a cartoon of flow-through elution of a DBS card, and (c) the spot after elution.
图 3 体积吸收微量采样装置图[47]
Figure 3. Schematic diagram of VAMS devices
图 4 侧流免疫分析示意图,(a) 6-MAM检测的侧流免疫分析示意图[49],(b) THC检测的侧流免疫分析示意图[50],(c) Mop和Met检测的侧流免疫分析示意图[51]
Figure 4. Schematic diagram of lateral flow assays,(a) a schematic diagram of the lateral flow immunoassay for 6-MAM detection, (b) a schematic diagram of the lateral flow immunoassay for THC, and(c) a schematic diagram of the lateral flow immunoassay for Mop and Met
图 5 同时检测THC和酒精的环形电化学传感器设计图[54]
Figure 5. Sensor design for simultaneous detection of THC and alcohol
图 6 SPME-TM与DART-MS/MS检测口腔液和血液示意图[58]
Figure 6. Schematic diagram of droplet extraction for OF and blood via SPME-TM coupled to DART-MS/MS
图 7 TD-LTP-MS检测口腔液示意图[59]
Figure 7. Schematic diagram of LTP-MS detection of oral fluids
图 8 便携式毛细管电泳仪全自动口腔液提取装置示意图[63]
Figure 8. Schematic diagram of the automatic oral fluid extraction device
-
[1] 中华人民共和国公安部. 车辆驾驶人员体内毒品含量阈值与检验: GA 1333—2017[S]. 北京: 中国质检出版社, 2018. Drug concentration and examination for vehicle drivers: GA 1333—2017[S]Beijing: China Quality Inspection Press , 2018 (in Chinese) .
[2] UNODC. World Drug Report 2022[EB/OL]. [2024-1-21]. [3] Verkehrsunfälle. Unfälle unter dem Einfluss von Alkohol oder anderen berauschenden Mitteln im Straßenverkehr 2021[EB/OL]. [2024-1-21]. [4] VINDENES V, BOIX F, KOKSÆTER P, et al. Drugged driving arrests in Norway before and after the implementation of per se law[J]. Forensic Science International, 2014, 245: 171-177. doi: 10.1016/j.forsciint.2014.10.038 [5] MAURER J, VERGALITO E, PRIOR A F, et al. Suspicion of driving under the influence of alcohol or drugs: Cross sectional analysis of drug prevalence in the context of the Swiss legislation[J]. Forensic Science International, 2021, 329: 111081. doi: 10.1016/j.forsciint.2021.111081 [6] DuPONT R L, VOAS R B, WALSH J M, et al. The need for drugged driving per se laws: A commentary[J]. Traffic Injury Prevention, 2012, 13(1): 31-42. doi: 10.1080/15389588.2011.632658 [7] JONES R, SHINAR D, WALSH J. State of knowledge of drug-impaired driving[C]. 2003 [8] 高刘阳. 论毒驾行为的法律治理: 基于英国法律实践的思考[J]. 中国刑警学院学报, 2017(2): 64-70. GAO L Y. Research on the legal control of drug driving—Reflections on the practice of English law[J]. Journal of Criminal Investigation Police University of China, 2017(2): 64-70 (in Chinese).
[9] VINDENES V, JORDBRU D, KNAPSKOG A B, et al. Impairment based legislative limits for driving under the influence of non-alcohol drugs in Norway[J]. Forensic Science International, 2012, 219(1/2/3): 1-11. [10] 梁根林. 刑事政策与刑法教义学交互审视下的危险驾驶罪[J]. 中国法律评论, 2022(4): 154-175. LIANG G L. Cross-evaluating the dangerous driving crime by criminal policy and criminal law dogmatics[J]. China Law Review, 2022(4): 154-175 (in Chinese).
[11] BLANDINO A, COTRONEO R, TAMBUZZI S, et al. Driving under the influence of drugs: Correlation between blood psychoactive drug concentrations and cognitive impairment. A narrative review taking into account forensic issues[J]. Forensic Science International. Synergy, 2022, 4: 100224. doi: 10.1016/j.fsisyn.2022.100224 [12] ALHEFEITI M A, BARKER J, SHAH I. Roadside drug testing approaches[J]. Molecules, 2021, 26(11): 3291. doi: 10.3390/molecules26113291 [13] CASATI S, BINDA M, DONGIOVANNI P, et al. Recent advances of drugs monitoring in oral fluid and comparison with blood[J]. Clinical Chemistry and Laboratory Medicine, 2023, 61(11): 1978-1993. doi: 10.1515/cclm-2023-0343 [14] NIEDBALA R S, KARDOS K W, FRITCH D F, et al. Detection of marijuana use by oral fluid and urine analysis following single-dose administration of smoked and oral marijuana[J]. Journal of Analytical Toxicology, 2001, 25(5): 289-303. doi: 10.1093/jat/25.5.289 [15] van der LINDEN T, WILLE S M R, RAMÍREZ-FERNANDEZ M, et al. Roadside drug testing: Comparison of two legal approaches in Belgium[J]. Forensic Science International, 2015, 249: 148-155. doi: 10.1016/j.forsciint.2015.01.034 [16] FIERRO I, COLÁS M, GONZÁLEZ-LUQUE J C, et al. Roadside opioid testing of drivers using oral fluid: The case of a country with a zero tolerance law, Spain[J]. Substance Abuse Treatment, Prevention, and Policy, 2017, 12(1): 22. doi: 10.1186/s13011-017-0108-3 [17] LEE D Y. Oral fluid testing[M]//Levine BS, KERRIGAN S. Principles of Forensic Toxicology. Cham: Springer, 2020: 629-656. [18] APS J K M, MARTENS L C. Review: The physiology of saliva and transfer of drugs into saliva[J]. Forensic Science International, 2005, 150(2/3): 119-131. [19] MUSSHOFF F, HOKAMP E G, BOTT U, et al. Performance evaluation of on-site oral fluid drug screening devices in normal police procedure in Germany[J]. Forensic Science International, 2014, 238: 120-124. doi: 10.1016/j.forsciint.2014.02.005 [20] KELLEY-BAKER T, MOORE C, LACEY J H, et al. Comparing drug detection in oral fluid and blood: Data from a national sample of nighttime drivers[J]. Traffic Injury Prevention, 2014, 15(2): 111-118. doi: 10.1080/15389588.2013.796042 [21] WILLE S M R, RAES E, LILLSUNDE P, et al. Relationship between oral fluid and blood concentrations of drugs of abuse in drivers suspected of driving under the influence of drugs[J]. Therapeutic Drug Monitoring, 2009, 31(4): 511-519. doi: 10.1097/FTD.0b013e3181ae46ea [22] VEITENHEIMER A M, WAGNER J R. Evaluation of oral fluid as a specimen for DUID[J]. Journal of Analytical Toxicology, 2017, 41(6): 517-522. doi: 10.1093/jat/bkx036 [23] DRUMMER O H. Drug testing in oral fluid[J]. The Clinical Biochemist. Reviews, 2006, 27(3): 147-159. [24] WAN G H, WU C L, CHEN Y F, et al. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients[J]. PLoS One, 2014, 9(1): e87088. doi: 10.1371/journal.pone.0087088 [25] HASLBECK K, SCHWARZ K, HOHLFELD J M, et al. Submicron droplet formation in the human lung[J]. Journal of Aerosol Science, 2010, 41(5): 429-438. doi: 10.1016/j.jaerosci.2010.02.010 [26] BONDESSON E, JANSSON L T, BENGTSSON T, et al. Exhaled breath condensate-site and mechanisms of formation[J]. Journal of Breath Research, 2009, 3(1): 016005. doi: 10.1088/1752-7155/3/1/016005 [27] KUBÁŇ P, FORET F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review[J]. Analytica Chimica Acta, 2013, 805: 1-18. doi: 10.1016/j.aca.2013.07.049 [28] 金丹丹, Anthony S Wexler, 陈文年, 等. 基于单颗粒气溶胶质谱的人体呼出颗粒物粒径分布与化学成分的分析方法研究[J]. 分析测试学报, 2018, 37(8): 906-912. JIN D D, WEXLER A, CHEN W N, et al. Characterization of size distribution and chemical composition of exhaled particles by using single particle aerosol mass spectrometry[J]. Journal of Instrumental Analysis, 2018, 37(8): 906-912 (in Chinese).
[29] BECK O, LEINE K, PALMSKOG G, et al. Amphetamines detected in exhaled breath from drug addicts: A new possible method for drugs-of-abuse testing[J]. Journal of Analytical Toxicology, 2010, 34(5): 233-237. doi: 10.1093/jat/34.5.233 [30] BECK O, SANDQVIST S, ERIKSEN P, et al. Method for determination of methadone in exhaled breath collected from subjects undergoing methadone maintenance treatment[J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2010, 878(24): 2255-2259. doi: 10.1016/j.jchromb.2010.06.035 [31] BECK O, SANDQVIST S, BÖTTCHER M, et al. Study on the sampling of methadone from exhaled breath[J]. Journal of Analytical Toxicology, 2011, 35(5): 257-263. doi: 10.1093/anatox/35.5.257 [32] COUCKE L, MASSARINI E, OSTIJN Z, et al. Δ9-Tetrahydrocannabinol concentrations in exhaled breath and physiological effects following cannabis intake–A pilot study using illicit cannabis[J]. Clinical Biochemistry, 2016, 49(13/14): 1072-1077. [33] LUO Y R, YUN C, LYNCH K L. Quantitation of cannabinoids in breath samples using a novel derivatization LC-MS/MS assay with ultra-high sensitivity[J]. Journal of Analytical Toxicology, 2019, 43(5): 331-339. doi: 10.1093/jat/bkz023 [34] BECK O, STEPHANSON N, SANDQVIST S, et al. Detection of drugs of abuse in exhaled breath using a device for rapid collection: Comparison with plasma, urine and self-reporting in 47 drug users[J]. Journal of Breath Research, 2013, 7(2): 026006. doi: 10.1088/1752-7155/7/2/026006 [35] KINTZ P, MURA P, JAMEY C, et al. Detection of ∆9-tetrahydrocannabinol in exhaled breath after cannabis smoking and comparison with oral fluid[J]. Forensic Toxicology, 2017, 35(1): 173-178. doi: 10.1007/s11419-016-0333-x [36] LANGEL K, ENGBLOM C, PEHRSSON A, et al. Drug testing in oral fluid-evaluation of sample collection devices[J]. Journal of Analytical Toxicology, 2008, 32(6): 393-401. doi: 10.1093/jat/32.6.393 [37] KIP A E, KIERS K C, ROSING H, et al. Volumetric absorptive microsampling (VAMS) as an alternative to conventional dried blood spots in the quantification of miltefosine in dried blood samples[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135: 160-166. doi: 10.1016/j.jpba.2016.12.012 [38] ABU-RABIE P, NEUPANE B, SPOONER N, et al. Validation of methods for determining pediatric midazolam using wet whole blood and volumetric absorptive microsampling[J]. Bioanalysis, 2019, 11(19): 1737-1754. doi: 10.4155/bio-2019-0190 [39] PROTTI M, MANDRIOLI R, MERCOLINI L. Perspectives and strategies for anti-doping analysis[J]. Bioanalysis, 2019, 11(3): 149-152. doi: 10.4155/bio-2018-0290 [40] MORETTI M, FRENI F, VALENTINI B, et al. Determination of antidepressants and antipsychotics in dried blood spots (DBSs) collected from post-mortem samples and evaluation of the stability over a three-month period[J]. Molecules, 2019, 24(20): 3636. doi: 10.3390/molecules24203636 [41] VERPLAETSE R, HENION J. Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on-line SPE-LC-MS/MS[J]. Drug Testing and Analysis, 2016, 8(1): 30-38. doi: 10.1002/dta.1927 [42] SADONES N, CAPIAU S, de KESEL P M M, et al. Spot them in the spot: Analysis of abused substances using dried blood spots[J]. Bioanalysis, 2014, 6(17): 2211-2227. doi: 10.4155/bio.14.156 [43] MERCOLINI L, MANDRIOLI R, PROTTI M, et al. Dried blood spot testing: A novel approach for the therapeutic drug monitoring of ziprasidone-treated patients[J]. Bioanalysis, 2014, 6(11): 1487-1495. doi: 10.4155/bio.14.3 [44] SPOONER N, DENNIFF P, MICHIELSEN L, et al. A device for dried blood microsampling in quantitative bioanalysis: Overcoming the issues associated blood hematocrit[J]. Bioanalysis, 2015, 7(6): 653-659. doi: 10.4155/bio.14.310 [45] MERCOLINI L, PROTTI M, CATAPANO M C, et al. LC–MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 123: 186-194. doi: 10.1016/j.jpba.2016.02.015 [46] MANDRIOLI R, MERCOLINI L, PROTTI M. Blood and plasma volumetric absorptive microsampling (VAMS) coupled to LC-MS/MS for the forensic assessment of cocaine consumption[J]. Molecules, 2020, 25(5): 1046. doi: 10.3390/molecules25051046 [47] NUGRAHA R V, YUNIVITA V, SANTOSO P, et al. Analytical and clinical validation of assays for volumetric absorptive microsampling (VAMS) of drugs in different blood matrices: A literature review[J]. Molecules, 2023, 28(16): 6046. doi: 10.3390/molecules28166046 [48] TRUVER M T, PALMQUIST K B, SWORTWOOD M J. Oral fluid and drug impairment: Pairing toxicology with drug recognition expert observations[J]. Journal of Analytical Toxicology, 2019, 43(8): 637-643. doi: 10.1093/jat/bkz075 [49] LIU J, HU X L, CAO F Q, et al. A lateral flow strip based on gold nanoparticles to detect 6-monoacetylmorphine in oral fluid[J]. Royal Society Open Science, 2018, 5(6): 180288. doi: 10.1098/rsos.180288 [50] PLOUFFE B D, MURTHY S K. Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use[J]. Electrophoresis, 2017, 38(3/4): 501-506. [51] HU Q S, WEI Q Z, ZHANG P P, et al. An up-converting phosphor technology-based lateral flow assay for point-of-collection detection of morphine and methamphetamine in saliva[J]. The Analyst, 2018, 143(19): 4646-4654. doi: 10.1039/C8AN00651B [52] LIUT J, BOTT U, MADEA B, et al. Evaluation of RapidSTAT®, DrugWipe® 6S, DrugScreen® 5TK and DrugScreen® 7TR for on-site drug testing in German police roadside traffic patrol[J]. Drug Testing and Analysis, 2022, 14(8): 1407-1416. doi: 10.1002/dta.3262 [53] ARKELL T R, KEVIN R C, STUART J, et al. Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices[J]. Drug Testing and Analysis, 2019, 11(10): 1486-1497. doi: 10.1002/dta.2687 [54] MISHRA R K, SEMPIONATTO J R, LI Z H, et al. Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a Wearable Electrochemical Ring Sensor[J]. Talanta, 2020, 211: 120757. doi: 10.1016/j.talanta.2020.120757 [55] NARANG J, SINGHAL C, KHANUJA M, et al. Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(8): 1586-1593. [56] NAOMI OIYE É, MIDORI TOIA KATAYAMA J, FERNANDA MUZETTI RIBEIRO M, et al. Voltammetric detection of 3,4-methylenedioxymethamphetamine (mdma) in saliva in low cost systems[J]. Forensic Chemistry, 2020, 20: 100268. doi: 10.1016/j.forc.2020.100268 [57] VASILJEVIC T, GÓMEZ-RÍOS G A, PAWLISZYN J. Single-use poly(etheretherketone) solid-phase microextraction-transmission mode devices for rapid screening and quantitation of drugs of abuse in oral fluid and urine via direct analysis in real-time tandem mass spectrometry[J]. Analytical Chemistry, 2018, 90(1): 952-960. doi: 10.1021/acs.analchem.7b04005 [58] VASILJEVIC T, PAWLISZYN J. Direct analysis in real time (DART) and solid-phase microextraction (SPME) transmission mode (TM): A suitable platform for analysis of prohibited substances in small volumes[J]. Analytical Methods, 2019, 11(30): 3882-3889. doi: 10.1039/C9AY00797K [59] WANG X C, HUA Z D, YANG Z G, et al. Low-temperature plasma-probe mass spectrometry based method for determination of new psychoactive substances in oral fluid[J]. Rapid Communications in Mass Spectrometry: RCM, 2018, 32(11): 913-918. doi: 10.1002/rcm.8112 [60] KANG M Q, ZHANG W R, DONG L P, et al. On-site testing of multiple drugs of abuse in urine by a miniature dual-LIT mass spectrometer[J]. Analytica Chimica Acta, 2020, 1101: 74-80. doi: 10.1016/j.aca.2019.12.028 [61] SAAR-REISMAA P, TRETJAKOVA A, MAZINA-ŠINKAR J, et al. Rapid and sensitive capillary electrophoresis method for the analysis of Ecstasy in an oral fluid[J]. Talanta, 2019, 197: 390-396. doi: 10.1016/j.talanta.2019.01.029 [62] SAAR-REISMAA P, BRILLA C A, LEIMAN K, et al. Use of a newly-developed portable capillary electrophoresis analyser to detect drugs of abuse in oral fluid: A case study[J]. Talanta, 2020, 211: 120662. doi: 10.1016/j.talanta.2019.120662 [63] RŮŽIČKA M, KALJURAND M, GORBATŠOVA J, et al. Portable fully automated oral fluid extraction device for illegal drugs[J]. Talanta, 2022, 243: 123389. doi: 10.1016/j.talanta.2022.123389 -