-
自上个世纪50年代以来,塑料制造和使用量与日俱增,全世界每年可生产近4亿吨的塑料[1 − 3],塑料添加剂的生产和使用也随之增多,按照其功能和结构差异,塑料添加剂可以分为增塑剂、阻燃剂、稳定剂、着色剂和填料等[1 − 4]. 其中,增塑剂使用量巨大,占整个塑料添加剂三分之一的市场份额[5,6],而邻苯二甲酸酯(PAEs)及其衍生物约占全球增塑剂总消费量的50%以上[7]. 为了提高塑料的延展性和可塑性,PAEs在塑料生产过程中被大量使用,占据最大的市场份额的聚氯乙烯(PVC)中PAEs的添加量可达20%—40%[2,8]. 尽管PAEs主要用于PVC,但研究表明在PE、PP、PS、PA、PET中也发现了PAEs的存在[9 − 10]. PAEs的广泛使用使其对环境和生物体造成无意污染的风险较高,由于塑料制品中的PAEs缺乏化学键的束缚[4],在塑料制品的制造、使用和处置过程中,以及暴露在高温、紫外线、酸碱环境中时,PAEs容易从塑料制品中解吸并释放到环境中,甚至从MPs颗粒中不断释放到环境,造成持续性危害[11].
塑料制品在全球范围内的高使用量使得MPs以及PAEs等化学添加剂在自然环境及生物体内高频率检出,在世界各地乃至青藏高原[12]等区域都可以检测到PAEs,其在部分地区的浓度甚至超过了环境质量标准限值[13]. 调查发现中国13个省市114个土壤样品中∑PAEs的总浓度范围为0.002—10.90 mg·kg−1(平均浓度为1.04 mg·kg−1)[14],处于全球较高水平;DBP(1.52 mg·L−1)和DEHP(6.35 mg·L−1)是长江、海河流域和黄河流域有记录以来检出浓度最高的PAEs[15], 珠江三角洲入海口处PAEs年总流量可达到
1390 t[16]. PAEs在自来水及生活污水中的检出也较为频繁[17 − 18],其主要来源可能是周边城市群废弃的塑料制品及上游废水的排放. 塑料中的PAEs等内分泌干扰物释放到水体和土壤环境中后,可能会影响生物体代谢循环,对生态系统结构和功能产生影响、对人体健康造成潜在危害[19 − 20].PAEs作为一种典型的内分泌干扰物[7],已经被证实能够在生物体内富集,并导致生物体的器官损伤和行为变化[21-22],引发代谢功能障碍、心血管疾病、癌症等多种疾病[23 − 25]. 鉴于PAEs对人体健康的潜在危害,美国环境与健康研究所(AIEH)、国际癌症研究机构(IARC)、美国环境保护局(USEPA)等都对其生产使用进行了限制. 美国环境保护署(USEPA)将邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸(DnOP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)认定为优先控制污染物[26-27],我国也将DMP、DnBP、DEHP列为优先控制的环境污染物[28],欧盟(EU)对多种PAEs在奶瓶、儿童玩具、装饰材料中的含量进行限制[29].
当前涉及MPs的研究大多聚焦于MPs的“载体”功能[20],探究环境中游离的有机污染物和重金属等在MPs上的负载情况,对MPs本身携带的添加剂关注较少. 已有文献对环境中有机污染物的解吸进行了研究,但缺乏对PAEs解吸行为的系统性总结. 鉴于此,本文对塑料制品中PAEs类增塑剂在环境中的解吸行为和解吸机理进行了总结,并通过风险评估预测PAEs污染对人体健康潜在的威胁.
-
巨大的消费需求导致PAEs在环境中被广泛检出,塑料制品中PAEs的释放是最主要的检出来源[13]. 基于Web of Science及中国知网(CNKI)文献检索(2010—2023年),有关MPs及PAEs吸附相关方向的文献共有
1625 篇(其中中文核心发文469篇),而解吸相关文献仅有408篇,主要围绕海洋和土壤环境、生物危害性、日常塑料制品(食品接触材料)及风险评估等方面进行的研究(如图1所示). -
各类废弃塑料制品是水环境中MPs和PAEs的重要来源[7,9,18,30],废弃塑料制品中的PAEs经破碎磨损、雨水淋洗、干湿沉降等过程释放并随地表径流进入水环境中. 实地逸度扩散证明MPs的存在是环境中PAEs浓度升高的主要原因[31],红海和沙姆沙尔河水中PAEs浓度和塑料碎片丰度之间存在正相关关系[32],这些研究均表明水环境中PAEs归因于塑料降解过程中的持续释放[33],PAEs从MPs中解吸并释放到海洋中的量约57.8—
16100 kg·a−1[10]. PAEs在自然水体、城镇自来水和居民生活污水[17]中均有检出,我国地表水中共检出19种PAEs(浓度范围为ND—5616.80 μg·L−1)[34],部分地区的PAEs浓度甚至超出规定限值[13].由于正辛醇-水分配系数(lgKow)高,PAEs自MPs解吸进入水环境后,大部分PAEs积累在水底沉积物中,使沉积物中的浓度远高于表层水[35],沉积物因而成为PAEs在环境中的重要归宿,而沉积物中的PAEs易再解吸回到水体中,造成第二次污染.
-
陆地生态系统是各种外源污染物(如PAEs)的集合体. 经过深入研究和调查发现,PAEs是农业土壤中最丰富的半挥发性有机污染物[36,37],农用化学品[38]、大气沉降[39]和垃圾填埋[40]导致了土壤中PAEs污染程度升高,主成分分析(PCA)表明贵州省烟草产区烟草和土壤中PAEs主要来源于塑料薄膜、化肥和农药[41]. PAEs解吸量受到地膜类型、厚度和老化的影响,PAEs的释放量与膜厚度呈负相关,同样填埋条件下薄塑料膜更容易破碎[42]. 测定发现覆膜农田表层土壤PAEs含量(0.45—0.81 mg·kg−1)高于未覆膜农田表层土壤PAEs的平均浓度(0.37 mg·kg−1)[43],表明塑料农膜的消耗和残留会增加土壤中PAEs的含量和环境风险[44]. 从塑料制品中解吸的PAEs可被植物根部吸收并进入食物链[45],已经在一些地区的蔬菜和作物中发现了PAEs[46,47]. 此外,含有PAEs的塑料薄膜在模拟土壤中处理四个月后仍能够持续释放PAEs[38],说明PAEs在土壤环境中停留时间长,具有长期危害性.
-
由于塑料制造过程中PAEs添加量的不可控以及自然环境的复杂性,环境中PAEs的检测结果仅能表明其来源性以及共存情况,难以对解吸行为和解吸机理进行阐述,需要在实验室中对MPs与PAEs的解吸行为进一步进行探究.
-
基于解吸与吸附的可逆性,所有影响吸附过程的因素都可以负作用于解吸过程,因此塑料粒径、增塑剂含量、pH、离子强度、塑料老化程度、溶解性有机物(DOM)等因素同样影响PAEs的解吸行为[8,25,48 − 50]. 影响塑料中PAEs解吸的因素可分为塑料的性质(粒径、结晶度、官能团等)、PAEs理化特性(分子结构、疏水性、溶解度等)和环境因素(pH、温度、溶解性有机物等)三方面,其中PAEs化学性质差异是影响解吸的最主要因素[8,50].
-
疏水分配作用是PAEs在MPs表面吸附的主要作用机理[51],PAEs溶解度和疏水性是决定其在MPs上的吸附解吸能力的主要因素[50],lgKow越大,吸附性能越强,研究表明PAEs在PE和PVC上的吸附量均表现为DIBP>DEP>DMP,与三者lgKow大小顺序一致;解吸量与吸附量顺序相一致,仍为DIBP>DEP>DMP,但DMP表现出较高的解吸率[51,52].
此外,PAEs浓度也会影响吸附解吸速率. 随着初始浓度的增加,PAEs的吸附效率呈现出先增加后基本不变的趋势[53],但针对高吸附量的PAEs(DBP、BBP、DEHP等),呈现出高吸附率、低解吸率的趋势[51],这可能是因为PAEs在解吸过程中存在解吸滞后[30],强疏水性PAEs与MPs的结合能力强,吸附进入MPs微孔中后不易释放.
-
不同类型的塑料对PAEs的吸附解吸能力不同,PAEs吸附解吸能力主要与塑料结构、比表面积和总孔体积相关[10]. 例如PAEs在PE上的吸附解吸量均高于PVC,这可能是因为PE为橡胶态聚合物,更大的内部空间有利于PAEs的扩散,并且其对有机物的吸附是可逆的,因此解吸量与吸附量大小密切相关[52];而PVC为玻璃态聚合物,其内部的刚性结构不利于疏水性有机污染物的吸附解吸,并且可能导致显著的不可逆解吸[52],因此PVC对PAEs的解吸量较低.
同种塑料由于粒径、老化程度等的差异,也会表现出不同的PAEs吸附解吸性能. 当颗粒尺寸减小时,MPs中DEHP的含量和释放的DEHP的数量随比表面积的增加而增加[54]. 而老化使得塑料表面出现裂纹和缝隙,分子键断裂产生更多含氧基团,引起塑料结晶度的变化,塑料的结构变得更疏松,亲水性增强[7 − 9,32],从而影响吸附解吸性能. 比如,老化PVC对弱疏水性PAEs的吸附能力增强、对强疏水性PAEs的吸附能力减弱,但解吸性能均有增强[51].
-
环境条件是影响PAEs解吸的另一类重要因素,主要是pH、温度、离子强度、溶解性有机物(DOM)等,由于PAEs是非离子化合物,其与塑料之间的相互作用受pH值和盐离子浓度的影响较小[7-8,10,55],因此排除静电吸引作为主要作用机理[32-33]. 温度对迁移速率和迁移量的影响明显,随着温度的提高PAEs解吸率和解吸量均有增长[32,56],这可能是因为温度促进了塑料聚合物化学键的断裂,加速了老化过程,同时较高的温度会导致聚合物内部结构疏松,使得污染物更容易从塑料内部解吸[57];另一方面,温度的提高增加了PAEs的溶解度,致使解吸率提高. 溶解性有机物(DOM)对塑料中PAEs的解吸有显著的影响,腐殖酸可以促进PVC产品中PAEs的释放[8,58],其原因可能在两方面:一是DOM对疏水性有机化合物具有增溶作用,这将促进PAEs向水中的扩散[33];二是DOM对塑料的亲和力比纯水强,DOM竞争塑料吸附位点,促使了PAEs的释放[8].
-
目前对PAEs的吸附解吸行为及影响因素研究有了一定的进展,但解吸机理探究相对有限. 解吸过程实际上是MPs、PAEs与环境介质三者之间复杂的相互作用,且解吸与再吸附过程同时存在、同时发生[50],从而增加了解吸过程的复杂性. 添加剂由MPs到环境介质的释放过程,一般基于菲克第二定律扩散模型进行解释,并利用Biot数(Bi)表征传质速率,通常假设塑料与环境介质界面瞬时平衡[48,59],近期研究认为MPs添加剂与水之间的分配常数(Kp)和添加剂在MPs中的扩散率(D)是解释疏水性有机添加剂的解吸平衡和动力学的两个关键特性[48].
-
与吸附行为类似,MPs中PAEs的解吸过程也可以通过动力学模型(伪一级动力学、伪二级动力学、颗粒内扩散模型、边界层扩散模型等)和等温线模型(langmuir模型、Freundlich模型、D—R模型等)拟合,对其限速过程和解吸机理进行探究. 动力学方法能够有效模拟PAEs的解吸过程,水环境下聚氯乙烯(PVC)塑料制品中的PAEs在前期较短时间内发生快速释放、后期解吸速率放缓[60],进一步研究发现PAEs在MPs中的解吸经历了快速解吸、表面扩散和缓慢释放三个阶段[61],即实验前期解吸速率较快,随着时间的推移解吸量缓慢增加直至达到解吸平衡[32,42]. 分子扩散和边界层理论同样可以用于探究PAEs自塑料内部向环境的扩散行为,主要限速步骤是PAEs在塑料-水边界层上的分配[33,55]. 通过对其他限速过程的深入探究,发现解吸受到多种复杂机制共同作用[57],整个解吸过程最初由塑料-水膜扩散作为主导,后期颗粒内扩散、膜扩散是主要作用机制,并且整个解吸过程中没有产生新官能团,说明解吸过程没有化学键参与[61].
综合分析表明,PAEs的解吸行为可分为MPs内的内部扩散、在塑料与介质边界层之间的扩散以及通过介质边界层从MPs传输到环境介质中三个过程[1,5,10,48,49,59](如图2所示). MPs内部的扩散被认为是整个解吸过程中的限速步骤[5,59],并受到浓度梯度和扩散系数的影响[55];边界层之间从固相到液相的分配由添加剂在环境介质中的溶解度控制[1]. 快速解吸过程主要受周围介质中污染物浓度的控制,而缓慢解吸过程则是因为添加剂通过扩散过程从聚合物层的内部浸出的速率较慢,此外随着时间推移解吸逐渐达到平衡也使得解吸速率降低.
-
塑料中PAEs不仅能够向水体和土壤环境中释放,也能够在生物体内解吸. 一旦被生物摄入,塑料就会暴露在肠道表面活性剂、酸性环境和高温(温血动物)中,这些因素都会促进PAEs解吸. 负载PAEs的MPs进入生物体内后,其解吸行为受到消化酶的影响,有研究表明MPs中的PAEs在模拟生物体消化道中(尤其是无脊椎动物消化道[62])的解吸量远高于自然水体[1]. 通过摄食途径进入生物体的塑料中的化学添加剂能够在生物体的消化道中解吸,并且在温血动物体内的迁移率要高于冷血动物[23,49,59],这表明解吸行为发生时,哺乳动物等受到更显著的威胁.
有研究表明PAEs在模拟肠液中的解吸量高于模拟胃液,这可能是因为模拟肠液中高浓度的酶和胆汁盐能明显提高PAEs的溶解度,促进其在模拟肠液中的释放[50]. 并且肠道微生物群也能够显著加速塑料中PAEs的释放,同时游离的PAEs会引起微生物代谢活性的变化[25].
-
解吸行为及机理的研究可揭示塑料中PAEs类增塑剂在环境中和生物体内的迁移转化、有助于PAEs人体健康风险和环境风险评估. 通过对PAEs解吸行为的研究,可以明确PAEs的环境最大浓度、平均估计每日摄入量等参数. USEPA将PAEs的口服摄入参考剂量(RfD)、塑料中PAEs环境解吸效应浓度(MEC)和预测无效应浓度(PNEC)作为人体健康风险关键参考值,利用这些参考值,采用健康风险指数(HI)、暴露裕度方法(MOE)、风险商(RQ)、污染负荷指数法(PLI)以及平均PAEs污染指数(PPI)等方法,可对PAEs进行环境风险评估.
为了更好地了解以PAEs为代表的塑料添加剂的环境污染风险,明确PAEs行业使用限制规则,并对其进行适当管理,需要对PAEs从产品释放到环境中的风险进行评估[7-8]. 环境PAEs解吸及摄入途径如图3所示,塑料中较小分子的PAEs(如DEP和DMP)在室内外空气中检出频率更高,可通过灰尘暴露和呼吸作用产生潜在危害[37],而DBP、DEHP等较大分子PAEs因具有较低的蒸汽压(PV)和较大的lgKow,更倾向于从空气中沉积到地表环境中,或在水底沉积物和土壤中积累,污染农副产品,从而通过饮食进入人体;而日常生活用品中PAEs主要通过皮肤接触引发人体健康风险.
表1是近年来塑料中PAEs在自然环境中的检出及风险评估情况,RQ是最常用的生态风险评估方法,而HI是最常见的人体健康评估方法. 从表1可知,塑料释放的PAEs在水环境中的检出频次最高,DEHP、DnBP、DOP等在部分环境中超过安全限制,可能导致潜在危害;在所有高频率检出的PAEs当中,DMP、DEP、DnBP和DnOP被认为是与癌症无关的化合物,而BBP和DEHP具有癌症风险(CR),因而需要重点关注.
-
环境介质中的PAEs首先进入水产品、食用作物、家禽和牲畜中,再通过食物链进入人体;而塑料材料(包装、管材等)、医疗用品、个人护理品中PAEs可能通过接触进入人体. 因此,PAEs引起的潜在健康风险应受到重视.
-
饮食摄入是人体接触PAEs的主要途径[73],约占总非癌症风险的90%以上[2]. 在水产品[74,75]及果蔬[46-47]中已有MPs摄入及PAEs检出的科学证据,生态风险分析表明其可能对人体健康产生危害[62]. 大西洋几内亚湾沿岸多个采样点PAEs的RQ值均高于1,可能对该地区藻类、甲壳类和鱼类带来较高风险[27],多项研究都表明塑料制品中的PAEs能够解吸进入环境并对水生生物造成威胁[13,40]. 尽管研究表明土壤中PAEs的生态风险较低,但食用污染土壤种植的作物仍可能影响人类健康. 通过对湖北荆门蔬菜种植基地多种果蔬(南瓜、茄子、番茄等)检测,发现其中DBP、DnOP、DEHP浓度较高,具有潜在风险威胁[46]. PAEs在植物的不同部位积累量有差异[37-38],因此食用不同的农产品,对人体健康的潜在风险不同,每日膳食摄入量评估表明摄入叶菜的暴露风险高于大米[36].
食品接触材料中PAEs的解吸是人体对PAEs的最大暴露源之一[9]. 常见塑料食品包装(茶包、果酱盖和酸奶包装[76]、塑料外卖盒[77]等)中PAEs是主要检出物质,并证实了PAEs等塑料添加剂向食品的转移[78]. 食物种类也会影响其外包装中PAEs的解吸,由于PAEs的亲脂性,其在高脂肪食物中的迁移量更高[79]. 日常盛水的塑料容器中的PAEs也能向饮用水中迁移[80],PAEs在自来水配水管(PVC)中高频检出,并且消毒剂增强了PVC管道中PAEs的解吸[81]. 饮用水(自来水和瓶装水)被认为是人类摄入MPs的最大贡献者[82],根据Adjei[83]等的计算,单个(袋装)饮用水包装解吸产生的PAEs对消费者健康危害较小,但终生接触饮用水塑料包装的癌症风险(CR)远超可接受水平[84]. 此外,由于加热或微波、过度使用、接触酸性或碱性物质等[85],塑料包装中PAEs的迁移率也会增加. 除了关于PAEs饮食摄入风险研究之外,生活中的接触暴露也不容忽视.
-
PAEs在各类日常生活用品中的解吸,说明生活中存在PAEs对人体的高暴露风险. 人体内高分子量PAEs可能主要来自饮食,而低分子量PAEs可能来自个人护理产品、灰尘和室内空气暴露等. 皮肤接触及呼吸吸入是最重要的非膳食摄入途径[12],PAE能够透过皮肤角质层脂质从塑料制品中向人体迁移[56]. 近年来口罩等医疗用品的广泛使用引起人们对其危害性的关注[86,87],最新研究将口罩确定为PAEs的新暴露源[41]. 在静脉输液袋(PVC)中检出较高浓度的DEHP,储存8 h后其在生理盐水中的浸出浓度超过美国食品和药物管理局(FDA)建议的安全限量,可对人体健康造成直接危害[88]. 塑料文具(PVC垫板等)也可通过皮肤吸收和手口摄入途径,对儿童健康产生影响,引起致癌性风险威胁[89]. 此外,PAEs是轮胎和道路磨损微塑料(TRWMPs)的主要释放产物[90],其中释放的DEHP的致癌风险超出安全阈值(∑ILCR>1×10−6)[91].
直接或间接途径摄入的MPs及PAEs能够通过血管系统和胃肠道消化系统迁移到不同的组织器官,通过生物积累和放大作用对生物体造成健康影响[82]. 另外,由于PAEs在人体内的半衰期较长,意味着它们可以随着时间的推移重复接触而积累[92]. 基于上述发现,对塑料制品中PAEs解吸风险评估进行研究是非常必要的.
-
不同人群受PAEs暴露的风险性存在差异,儿童、女性以及相关行业从业人员表现出更高的风险[92]. PAEs可以通过母乳从母亲传递给婴儿,也可以通过胎盘从孕妇传给生长中的胚胎,因此儿童和孕妇被认为是对PAEs较为敏感的群体[93]. 此前的多项研究表明儿童对PAEs的摄入量远高于成人[67,73],儿童面临更加严重的暴露威胁[41],这可能是因为儿童的手口活动量较大,容易接触到含PAEs的塑料制品[94].
女性比男性更容易受到PAEs影响,一项对大学生志愿者的调查发现,由于不同人群的生活习惯和运动方式各有不同,因此毛巾或湿巾擦拭引起的男女生皮肤表面的PAEs暴露程度存在差异[95],类似研究发现女生宿舍粉尘中PAEs含量和尿液中mPAEs(邻苯二甲酸酯单酯)含量均高于男性[96],表明女性PAEs摄入风险更高.
此外研究表明塑料加工制造企业及塑料处置、回收场所中PAEs的检测量可能是区域背景浓度的数倍,因此参与塑料生产、制造、废弃、再利用等环节的工人面临着更高的暴露风险[97]. 在塑料加工厂橡胶靴和软管制造厂以及美甲店等场所中,PAEs残留物的职业暴露水平显著升高(2—>
1000 倍)[94],对泰国塑料回收厂工人职业暴露风险的评估表明,挤塑工序工人受到更大的风险威胁[98]. 通过对塑料资源化过程中不同活动造成的风险进行排序,研究发现随着废塑料数量的激增,PAEs等潜在有害物质重新进入日常使用的风险可能会增加[99]. -
对PAEs解吸行为的研究发现,解吸过程受多种因素制约,解吸机理复杂. 一般而言更小的颗粒、更高的增塑剂含量、老化以及溶解性有机物(DOM)的存在会导致水溶液中PAEs的高浸出[8],模拟胃肠液中PAEs的解吸率可能会高于自然水体(湖泊、海洋等);另外,塑料对PAEs具有较高的吸附性(吸附率在50%—80%),这影响了PAEs的解吸,致使解吸过程中存在再吸附和迟滞现象,因此,环境中PAEs总解吸量可能被低估[57].
根据生态风险分析,PAEs极有可能通过呼入粉尘、皮肤接触以及饮食摄入等方式进入人体[6],对于较高浓度的PAEs暴露,即便是短期接触也可能导致严重的健康问题. 鉴于受各种因素制约,生物体的暴露值难以确定,建议将生物体内PAEs的检出值作为其受MPs影响的参考[75],以便对PAEs和MPs危害性进行具体评估.
未来需要从以下方面进行深入探究:
(1)充分考虑实际环境的影响:当前实验室探究仍然是主要研究方式,与真实自然环境存在较大的差异;
(2)研究关注多污染物联合作用:塑料制品中的化学添加剂并非单一添加,但是目前研究大多集中在单一污染物的独立作用中,缺乏多污染物联合作用及其吸附解吸行为相互影响的研究,对多污染物可能产生的叠加或协同作用缺乏关注;
(3)完善风险评估体系:目前的风险评估集中在水环境及对水生生物的风险性研究,缺乏对MPs及PAEs等塑料添加剂影响生物代谢造成的生态风险研究;PAEs人体健康风险限制缺少统一的评价标准,难以估计人体受PAEs危害的程度.
塑料中邻苯二甲酸酯类在环境中的解吸行为及其风险评估
Desorption and risk assessment of phthalate from plastics in the environment
-
摘要: 广泛存在的塑料及微塑料(microplastics,MPs)是环境中邻苯二甲酸酯类(phthalate ester,PAEs)内分泌干扰物的重要来源,PAEs种类丰富、应用广泛,在自然环境及多种生物体内高频率检出,作为内分泌干扰物对生物体具有潜在危害. MPs一方面可以将PAEs带入到生物体内,另一方面又能够向环境持续释放PAEs. 目前有不少MPs吸附PAEs的研究,但是对其解吸行为的研究相对有限. 由于塑料添加剂解吸危害的隐蔽性,因MPs解吸引起的PAEs暴露行为及其对生态环境和人体健康的影响应该受到更多关注. 本文综述了塑料中PAEs的解吸行为和机理、影响解吸的因素以及PAEs解吸的生态风险,为环境中PAEs的风险研究提供有益的参考.
-
关键词:
- 微塑料(MPs) /
- 邻苯二甲酸酯(PAEs) /
- 解吸行为 /
- 解吸机理 /
- 风险评估
Abstract: Widespread presence of plastics and microplastics (MPs) are important sources of phthalate esters (PAEs), a class of endocrine disruptors, in the environment. PAEs are abundant and widely used, and they are detected with high frequencies in natural environments and a variety of organisms. PAEs are potentially hazardous to biological health as endocrine disruptors. MPs can bring PAEs into organisms, and at the same time, it can continuously release PAEs into the environment. At present, the researches on the adsorption of PAEs by MPs are extensive, but relatively fewer researches are made on PAEs desorption behavior. Due to the hidden nature of the hazards caused by the desorption of plastic additives, the exposure behavior of PAEs caused by MPs desorption and its effects on ecological environment and human health should receive more attention. This paper reviews the desorption behavior and mechanism of PAEs in plastics, the factors affecting desorption, and the ecological risk of PAEs desorption to provide a useful reference for the study of PAEs risk in the environment. -
-
表 1 环境中邻苯二甲酸酯(PAEs)风险评估
Table 1. Risk Assessment of Phthalates (PAEs) in the Environment
样品/采样点
Sample/sampling pointPAEs种类及浓度
Type and concentration of PAEs风险评估
Risk Assessment来源
Source生态风险评估 珠江水系东江流域 6种PAEs浓度(834— 4368 ng·L−1)RQ:BBP(WS 为0.004—0.011)、DS 为0.085—0.304)
DEP(WS为0.072—0.271)、DS为0.027—0.112)
DEHP(WS为0.327—0.550)、DS为0.286—0.821)
DBP(WS为0.750—1.032)、DS为1.612—4.144)*
DOP(WS为0.250—0.875)、DS为1.000—2.250)*[16] 中国鄱阳湖 DMP(434— 2594 ng·L−1)
DEP(40—314 ng·L−1)
DAP(80—527 ng·L−1)
DPrP(45—308 ng·L−1)
DBP(ND—182 ng·L−1)HI:∑PAEs为1.89×10−5
RQ:∑PAEs2.67×10−2[63] 渤海海域 PAEs总浓度:
春季(8.02 μg·L−1)
夏季(4.53 μg·L−1)
冬季(3.16 μg·L−1)地表水PAEs的平均PPI值0.75 μg·L−1
RQ: DEHP(春季6.90、夏季2.80、冬季1.90)、DBP(夏季1.20)*[64] 非洲维多利亚湖乌干达区 DBP(350— 16000 ng·L−1)
DEHP(210—23000 ng·L−1)
BEHP (210—23000 ng·L−1)
BEHA (12—6100 ng·L−1)RQ:BEHP (4.4)、DBP (1.6)、BEHA (12)>1高风险*; [65] 印度城区河流
(Cooum River and Adyar River)ΣPAEs平均浓度
545—2745 ng·L−1DnBP(RQ>1)*
DEHP(0.1 < RQ < 1)[66] 孟加拉城市河流 ∑7PAEs浓度:
8.27—54.1 μg·L−1
(Savar地区河流)
24.6—156 μg·L−1
(Tongi地区河流)RQ:DEHP >1*
DMP、DEP、DBP(0.1—1)[67] 红海(沙姆沙尔河流域) (DEP) (22— 1124 ng·L−1)
(DBP) (9—346 ng·L−1)
(DEHP) (62—640 ng·L−1)
(DMP) (5—76 ng·L−1)
(BBP) (4—25 ng·L−1)
DnOP (0.5—80 ng·L−1)RQ:DBP(0.08—0.69)和DEHP(0.04—0.42) 为中低风险、DMP和DEP值可忽略;
HI:∑4PAEs (DMP、DEP、DBP和DEHP)在0.20—0.79;
PRI :0.14—0.36(<0.5)[32] 肯尼亚污水处理厂污泥 278.67至 9243.49 ng·g−1之间干重(dw)DEHP(RQ>1)* [68] 人体健康风险 黄河三角洲 Σ6PAEs的浓度
0.709—9.565 mg·kg−1HQ:Σ5PAEs成人6.99×10−5,儿童4.85×10−4.
CR:BBP、DEHP< 10−6[69] 泉州市家庭自来水 5种PAE(780.0— 9180 ng·L−1)HQ:DEHP(成人0.55—0.73、儿童1.17—1.79)* [17] 孟加拉城市河流 ∑7PAEs浓度:
8.27—54.1 μg·L−1(Savar地区河流)
24.6—156 μg·L−1(Tongi地区河流)HI:成人0.134,儿童0.254(Savar地区)
成人0.053,儿童0.101(Tongi地区)[67] 中国茶园土壤 6种PAEs平均浓度 1.04 mg·kg−1 CR:DEHP(成人7.20 ×10−6、儿童2.84 ×10−6)*
HI:均小于1[14] 中国南京市辣椒种植大棚 土壤:∑PAEs平均浓度586.3 μg·kg−1
辣椒:196.6—304.2 μg·kg−1
(平均245.4 μg·kg−1)HQ:∑PAEs(8.89±2.04)× 10−10—(1.04±0.19)×10−3
CR:BBP(1.68×10−11—3.64×10−9)、DEHP(6.35×10−9—2.91×10−7)[70] 中国广州实验室室内空气 DiBP(0.48×103 ng·m−3)
DMEP(0.44×103 ng·m−3)
DBP(0.39×103 ng·m−3)
DMEP(0.16×103 ng·m−3)
DPHP(0.13×103 ng·m−3)HI:1.51×10−3(男性)、1.33×10−3(女性) [71] 中国上海室内灰尘 16种PAEs总含量39.90— 2516.00 mg·kg−1CR:DEHP(儿童6.63×10−5、成人1.02× 10−5)* [72] 注:表中RQ表示风险商、HI表示危害指数、PLI表示污染负荷指数、HQ表示风险指数、WS表示雨季、DS表示旱季;*表明具有较高风险值. -
[1] BRIDSON J H, GAUGLER E C, SMITH D A, et al. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches[J]. Journal of Hazardous Materials, 2021, 414: 125571. doi: 10.1016/j.jhazmat.2021.125571 [2] GROH K J, BACKHAUS T, CARNEY-ALMROTH B, et al. Overview of known plastic packaging-associated chemicals and their hazards[J]. Science of The Total Environment, 2019, 651: 3253-3268. doi: 10.1016/j.scitotenv.2018.10.015 [3] CHEN Y, ZHANG Y, ZHANG Z. Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: A review[J]. Environmental Pollution, 2021, 287: 117568. doi: 10.1016/j.envpol.2021.117568 [4] CAPOLUPO M, SØRENSEN L, JAYASENA K D R, et al. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms[J]. Water Research, 2020, 169: 115270. doi: 10.1016/j.watres.2019.115270 [5] CHENG H, LUO H, HU Y, et al. Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review[J]. Water Research, 2020, 185: 116253. doi: 10.1016/j.watres.2020.116253 [6] TUAN TRAN H, LIN C, BUI X T, et al. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies[J]. Bioresource Technology, 2022, 344: 126249. doi: 10.1016/j.biortech.2021.126249 [7] ZHAO E, XU Z, XIONG X, et al. The impact of particle size and photoaging on the leaching of phthalates from plastic waste[J]. Journal of Cleaner Production, 2022, 367: 133109. doi: 10.1016/j.jclepro.2022.133109 [8] YAN Y, ZHU F, ZHU C, et al. Dibutyl phthalate release from polyvinyl chloride microplastics: Influence of plastic properties and environmental factors[J]. Water Research, 2021, 204: 117597. doi: 10.1016/j.watres.2021.117597 [9] DIMASSI S N, HAHLADAKIS J N, YAHIA M N D, et al. Effect of temperature and sunlight on the leachability potential of BPA and phthalates from plastic litter under marine conditions[J]. Science of The Total Environment, 2023, 894: 164954. doi: 10.1016/j.scitotenv.2023.164954 [10] CAO Y, LIN H, ZHANG K, et al. Microplastics: A major source of phthalate esters in aquatic environments[J]. Journal of Hazardous Materials, 2022, 432: 128731. doi: 10.1016/j.jhazmat.2022.128731 [11] CHEN X, LI X, LI Y. Toxicity inhibition strategy of microplastics to aquatic organisms through molecular docking, molecular dynamics simulation and molecular modification[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112870. doi: 10.1016/j.ecoenv.2021.112870 [12] ZHANG Y, LI X, ZHANG H, et al. Distribution, source apportionment and health risk assessment of phthalate esters in outdoor dust samples on Tibetan Plateau, China[J]. Science of The Total Environment, 2022, 834: 155103. doi: 10.1016/j.scitotenv.2022.155103 [13] HAJIOUNI S, MOHAMMADI A, RAMAVANDI B, et al. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline[J]. Science of The Total Environment, 2022, 806: 150559. doi: 10.1016/j.scitotenv.2021.150559 [14] LI Y, WANG J, BAI H, et al. Occurrence, sources, and risk assessments of phthalic acid esters in tea plantations in China[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107636. doi: 10.1016/j.jece.2022.107636 [15] PU S Y, HAMID N, REN Y W, et al. Effects of phthalate acid esters on zebrafish larvae: Development and skeletal morphogenesis[J]. Chemosphere, 2020, 246: 125808. doi: 10.1016/j.chemosphere.2019.125808 [16] CAO Y, LIN H, WANG Q, et al. Significant riverine inputs of typical plastic additives-phthalate esters from the Pearl River Delta to the northern South China Sea[J]. Science of The Total Environment, 2022, 849: 157744. doi: 10.1016/j.scitotenv.2022.157744 [17] WANG L, LI J, ZHENG J, et al. Source tracing and health risk assessment of phthalate esters in household tap-water: A case study of the urban area of Quanzhou, Southeast China[J]. Ecotoxicology and Environmental Safety, 2022, 248: 114277. doi: 10.1016/j.ecoenv.2022.114277 [18] VIMALKUMAR K, MAYILSAMY M, ARUN E, et al. Screening of antimicrobials, fragrances, UV stabilizers, plasticizers and preservatives in sewage treatment plants (STPs) and their risk assessment in India[J]. Chemosphere, 2022, 308: 136452. doi: 10.1016/j.chemosphere.2022.136452 [19] SUN S, HU X, KANG W, et al. Combined effects of microplastics and warming enhance algal carbon and nitrogen storage[J]. Water Research, 2023, 233: 119815. doi: 10.1016/j.watres.2023.119815 [20] WU X, WU Z, AMDE M, et al. A Progress Review on Characterization, Environmental Behaviors and Toxicity Effects of Micro (Nano) Plastics Using Atomic Spectrometry[J]. Atomic Spectroscopy, 2024, 44(5): 282-297. [21] SENDRA M, PEREIRO P, FIGUERAS A, et al. An integrative toxicogenomic analysis of plastic additives[J]. Journal of Hazardous Materials, 2021, 409: 124975. doi: 10.1016/j.jhazmat.2020.124975 [22] WANG H, WANG Y, WANG Q, et al. The combined toxic effects of polyvinyl chloride microplastics and di(2-ethylhexyl) phthalate on the juvenile zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2022, 440: 129711. doi: 10.1016/j.jhazmat.2022.129711 [23] LIU P, WU X, LIU H, et al. Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions[J]. Journal of Hazardous Materials, 2020, 392: 122346. doi: 10.1016/j.jhazmat.2020.122346 [24] FAN Y, QIN Y, CHEN M, et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism[J]. Journal of Hazardous Materials, 2020, 385: 121534. doi: 10.1016/j.jhazmat.2019.121534 [25] YAN Z, ZHANG S, ZHAO Y, et al. Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota[J]. Environmental Pollution, 2022, 310: 119884. doi: 10.1016/j.envpol.2022.119884 [26] US EPA O. Final Scope Documents for High-Priority Chemicals Undergoing Risk Evaluation[EB]. (2020-04-03). [27] BENSON N U, FRED-AHMADU O H. Occurrence and distribution of microplastics-sorbed phthalic acid esters (PAEs) in coastal psammitic sediments of tropical Atlantic Ocean, Gulf of Guinea[J]. The Science of The Total Environment, 2020, 730: 139013. doi: 10.1016/j.scitotenv.2020.139013 [28] 史陈雪, 武倩倩, 刘泉利, 等. 农业土壤中邻苯二甲酸酯分布特征及影响因素综述[J]. 生态与农村环境学报, 2024, 40(01): 23-35. SHI C X, WU Q Q, LIU Q L, et al. Spatial Distributions and Factors of Phthalic Acid Esters in Agricultural Soils in China: A Review[J]. Journal of Ecology and rural environment, 2024, 40(01): 23-35(in Chinese).
[29] Authorisation List - ECHA[EB/OL]. [2023-08-14]. [30] LIU B, JIANG T, LI Z, et al. Phthalate esters in surface sediments from fishing ports in Circum-Bohai-Sea region, China[J]. Marine Pollution Bulletin, 2021, 171: 112782. doi: 10.1016/j.marpolbul.2021.112782 [31] JANG M, SHIM W J, HAN G M, et al. Plastic debris as a mobile source of additive chemicals in marine environments: In-situ evidence[J]. The Science of The Total Environment, 2023, 856: 158893. doi: 10.1016/j.scitotenv.2022.158893 [32] DHAVAMANI J, BECK A J, GLEDHILL M, et al. The effects of salinity, temperature, and UV irradiation on leaching and adsorption of phthalate esters from polyethylene in seawater[J]. The Science of The Total Environment, 2022, 838: 155461. doi: 10.1016/j.scitotenv.2022.155461 [33] HENKEL C, LAMPRECHT J, HÜFFER T, et al. Environmental factors strongly influence the leaching of di(2-ethylhexyl) phthalate from polyvinyl chloride microplastics[J]. Water Research, 2023, 242: 120235. doi: 10.1016/j.watres.2023.120235 [34] 孔昊玥, 刘红玲. 最大累积率识别中国地表水中邻苯二甲酸酯类关键污染物和复合污染生态风险[J]. 环境化学, 2021, 40(3): 706-716. doi: 10.7524/j.issn.0254-6108.2019100803 KONG H Y, LIU H L. Identification the key pollutants of phthalic acid esters in surface water of China and ecological risk of mixture based on maximum cumulative ratio[J]. Environmental Chemistry, 2021, 40(3): 706-716(in Chinese). doi: 10.7524/j.issn.0254-6108.2019100803
[35] JEBARA A, ALBERGAMO A, RANDO R, et al. Phthalates and non-phthalate plasticizers in Tunisian marine samples: Occurrence, spatial distribution and seasonal variation[J]. Marine Pollution Bulletin, 2021, 163: 111967. doi: 10.1016/j.marpolbul.2021.111967 [36] WANG Y, ZHANG Z, BAO M, et al. Characteristics and risk assessment of organophosphate esters and phthalates in soils and vegetation from Dalian, northeast China[J]. Environmental Pollution, 2021, 284: 117532. doi: 10.1016/j.envpol.2021.117532 [37] LI X, WANG Q, JIANG N, et al. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review[J]. Environmental Research, 2023, 220: 115196. doi: 10.1016/j.envres.2022.115196 [38] VILJOEN S J, BRAILSFORD F L, MURPHY D V, et al. Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions[J]. Journal of Hazardous Materials, 2023, 443: 130256. doi: 10.1016/j.jhazmat.2022.130256 [39] HE Y, WANG Q, HE W, et al. Phthalate esters (PAEs) in atmospheric particles around a large shallow natural lake (Lake Chaohu, China)[J]. The Science of The Total Environment, 2019, 687: 297-308. doi: 10.1016/j.scitotenv.2019.06.034 [40] KOTOWSKA U, KAPELEWSKA J, SAWCZUK R. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland[J]. Environmental Pollution, 2020, 267: 115643. doi: 10.1016/j.envpol.2020.115643 [41] LEONI C, MAJORANI C, CRESTI R, et al. Determination and risk assessment of phthalates in face masks. An Italian study[J]. Journal of Hazardous Materials, 2023, 443: 130176. doi: 10.1016/j.jhazmat.2022.130176 [42] UZAMURERA A G, WANG P Y, ZHAO Z Y, et al. Thickness-dependent release of microplastics and phthalic acid esters from polythene and biodegradable residual films in agricultural soils and its related productivity effects[J]. Journal of Hazardous Materials, 2023, 448: 130897. doi: 10.1016/j.jhazmat.2023.130897 [43] WANG D, XI Y, SHI X Y, et al. Reduction effects of solar radiation, mechanical tension, and soil burial on phthalate esters concentrations in plastic film and soils[J]. Science of The Total Environment, 2021, 778: 146341. doi: 10.1016/j.scitotenv.2021.146341 [44] SUN Q, ZHANG X, LIU C, et al. The content of PAEs in field soils caused by the residual film has a periodical peak[J]. The Science of The Total Environment, 2023, 864: 161078. doi: 10.1016/j.scitotenv.2022.161078 [45] RAMANAYAKA S, VITHANAGE M, ZHANG H, et al. Role of soil organic matter on the retention and mobility of common plastic additives, Di(2-ethylhexyl) phthalate, bisphenol A and benzophenone, in soil[J]. Environmental Research, 2023, 236: 116725. doi: 10.1016/j.envres.2023.116725 [46] MA T, ZHOU W, CHEN L, et al. Phthalate esters contamination in vegetable–soil system of facility greenhouses in Jingmen, central China and the assessment of health risk[J]. Environmental Geochemistry and Health, 2020, 42(9): 2703-2721. doi: 10.1007/s10653-019-00504-2 [47] CAO X, LIANG Y, JIANG J, et al. Organic additives in agricultural plastics and their impacts on soil ecosystems: Compared with conventional and biodegradable plastics[J]. TrAC-Trends in Analytical Chemistry, 2023, 166: 117212. doi: 10.1016/j.trac.2023.117212 [48] DO A T N, HA Y, KWON J H. Leaching of microplastic-associated additives in aquatic environments: A critical review[J]. Environmental Pollution, 2022, 305: 119258. doi: 10.1016/j.envpol.2022.119258 [49] 陈蕾, 高山雪, 徐一卢. 塑料添加剂向生态环境中的释放与迁移研究进展[J]. 生态学报, 2021, 41(8): 3315-3324. CHEN L, GAO S X, XU Y L. Desorption Behavior and Impacting Factors of Microplastic-loaded Pollutants in Biological Gastrointestinal Tract: A Review[J]. Journal of Ecology, 2021, 41(8): 3315-3324(in Chinese).
[50] 王宏展, 吴小伟, 赵晓丽, 等. 生物体胃肠道中微塑料负载污染物的解吸行为和影响因素研究进展[J]. 生态毒理学报, 2022, 17(2): 64-73. WANG H Z, WU X W, ZHAO X L, et al. Progress in studies on desorption behavior and influencing factors of microplastics-loaded pollutants in gastrointestinal tract of living organisms[J]. Journal of Ecotoxicology, 2022, 17(2): 64-73(in Chinese).
[51] 朱思甫, 刘建超, 陆光华. 自然环境老化聚氯乙烯和橡胶微粒对邻苯二甲酸酯类塑化剂的吸附解吸行为 [J]. 环境科学,2024, 45(8): 4946-4955. ZHU S F, LIU J C, LU G H. Adsorption and desorption behavior of PAEs plasticizers on PVC and rubber particles after natural environment aging[J]. Environmental Science,2024, 45(8): 4946-4955 (in Chinese).
[52] 孙淑, 孟硕, 周震峰. 聚乙烯和聚氯乙烯微塑料对邻苯二甲酸酯的吸附[J]. 环境科学与技术, 2022, 45(8): 9-16. SUN S, MENG S, ZHOU Z F. Adsorption of polyethylene and polyvinyl chloride to phthalate esters[J]. Environmental Science and technology, 2022, 45(8): 9-16(in Chinese).
[53] ZHANG S, WEI J, GUO R, et al. The transformation and interaction of diallyl phthalate (DAP) in the three kinds of plastic under ultraviolet/sodium dichloroisocyanurate (UV/DCCNa) disinfection process[J]. Chemical Engineering Journal, 2023, 467: 143401. doi: 10.1016/j.cej.2023.143401 [54] MAO S, HE C. Effect of particle size and environmental conditions on the release of di(2-ethylhexyl) phthalate from microplastics[J]. Chemosphere, 2023, 345: 140474. doi: 10.1016/j.chemosphere.2023.140474 [55] GULIZIA A M, PATEL K, PHILIPPA B, et al. Understanding plasticiser leaching from polystyrene microplastics[J]. Science of The Total Environment, 2023, 857: 159099. doi: 10.1016/j.scitotenv.2022.159099 [56] BAJAGAIN R, PANTHI G, PARK J H, et al. Enhanced migration of plasticizers from polyvinyl chloride consumer products through artificial sebum[J]. Science of The Total Environment, 2023, 874: 162412. doi: 10.1016/j.scitotenv.2023.162412 [57] YE X, WANG P, WU Y, et al. Microplastic acts as a vector for contaminants: the release behavior of dibutyl phthalate from polyvinyl chloride pipe fragments in water phase[J]. Environmental Science and Pollution Research, 2020, 27(33): 42082-42091. doi: 10.1007/s11356-020-10136-0 [58] LUO H, LIU C, HE D, et al. Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs[J]. Water Research, 2022, 222: 118921. doi: 10.1016/j.watres.2022.118921 [59] SUN B, ZENG E Y. Leaching of PBDEs from microplastics under simulated gut conditions: Chemical diffusion and bioaccumulation[J]. Environmental Pollution, 2022, 292: 118318. doi: 10.1016/j.envpol.2021.118318 [60] PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166-175. [61] ZHONG X, YI X, CHENG F, et al. Leaching of di-2-ethylhexyl phthalate from biodegradable and conventional microplastics and the potential risks[J]. Chemosphere, 2023, 311: 137208. doi: 10.1016/j.chemosphere.2022.137208 [62] COFFIN S, LEE I, GAN J, et al. Simulated digestion of polystyrene foam enhances desorption of diethylhexyl phthalate (DEHP) and In vitro estrogenic activity in a size-dependent manner[J]. Environmental Pollution, 2019, 246: 452-462. doi: 10.1016/j.envpol.2018.12.011 [63] ZHU X, JIANG L, TU Y, et al. In situ monitoring of phthalate esters (PAEs) pollution and environmental risk assessment in Poyang Lake Basin by DGT Technology using cyclodextrin polymer as binding phase[J]. Science of The Total Environment, 2022, 808: 151892. doi: 10.1016/j.scitotenv.2021.151892 [64] SUN C, CHEN L, ZHAO S, et al. Seasonal distribution and ecological risk of phthalate esters in surface water and marine organisms of the Bohai Sea[J]. Marine Pollution Bulletin, 2021, 169: 112449. doi: 10.1016/j.marpolbul.2021.112449 [65] NANTABA F, PALM W U, WASSWA J, et al. Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda[J]. Chemosphere, 2021, 262: 127716. doi: 10.1016/j.chemosphere.2020.127716 [66] CHANDRA S, CHAKRABORTY P. Air-water exchange and risk assessment of phthalic acid esters during the early phase of COVID-19 pandemic in tropical riverine catchments of India[J]. Chemosphere, 2023, 341: 140013. doi: 10.1016/j.chemosphere.2023.140013 [67] URMI M A, AKBOR Md A, SARKER S, et al. A pioneering study on endocrine disruptors (phthalates esters) in urban rivers of Bangladesh: An appraisal of possible risk assessment to ecology and human health[J]. Journal of Hazardous Materials Advances, 2023, 12: 100369. doi: 10.1016/j.hazadv.2023.100369 [68] NGENO E, ONGULU R, ORATA F, et al. Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: Concentrations, removal efficiency, mass loading rates and ecological impacts[J]. Environmental Research, 2023, 237: 117076. doi: 10.1016/j.envres.2023.117076 [69] LIU W, LI X, LV H, et al. Occurrence and health risk assessment of phthalates in a typical estuarine soil: A case study of the various functional areas of the Yellow River Delta[J]. Science of The Total Environment, 2023, 904: 166972. doi: 10.1016/j.scitotenv.2023.166972 [70] LI Y, YAN H, LI X, et al. Presence, distribution and risk assessment of phthalic acid esters (PAEs) in suburban plastic film pepper-growing greenhouses with different service life[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110551. doi: 10.1016/j.ecoenv.2020.110551 [71] FENG Y X, FENG N X, ZENG L J, et al. Occurrence and human health risks of phthalates in indoor air of laboratories[J]. Science of The Total Environment, 2020, 707: 135609. doi: 10.1016/j.scitotenv.2019.135609 [72] 杨其帆, 沈冰, 蔡菁婷, 等. 上海市室内灰尘中邻苯二甲酸酯分布及人群暴露风险评估[J]. 上海预防医学, 2022, 34(3): 247-251,264. YANG Q F, SHEN B, CAI J T, et al. Distribution and exposure assessment of phthalic acid esters(PAEs)in indoor dust of Shanghai[J]. Shanghai Preventive Medicine, 2022, 34(3): 247-251,264(in Chinese).
[73] FU L, SONG S, LUO X, et al. Unraveling the contribution of dietary intake to human phthalate internal exposure[J]. Environmental Pollution, 2023, 337: 122580. doi: 10.1016/j.envpol.2023.122580 [74] SCHMIDT N, CASTRO-JIMÉNEZ J, OURSEL B, et al. Phthalates and organophosphate esters in surface water, sediments and zooplankton of the NW Mediterranean Sea: Exploring links with microplastic abundance and accumulation in the marine food web[J]. Environmental Pollution, 2021, 272: 115970. doi: 10.1016/j.envpol.2020.115970 [75] SAMBOLINO A, INIGUEZ E, HERRERA I, et al. Microplastic ingestion and plastic additive detection in pelagic squid and fish: Implications for bioindicators and plastic tracers in open oceanic food webs[J]. Science of The Total Environment, 2023, 894: 164952. doi: 10.1016/j.scitotenv.2023.164952 [76] TANG C, GÓMEZ RAMOS M J, HEFFERNAN A, et al. Evaluation and identification of chemical migrants leached from baby food pouch packaging[J]. Chemosphere, 2023, 340: 139758. doi: 10.1016/j.chemosphere.2023.139758 [77] ZHANG Q Q, LAN M Y, LI H R, et al. Plastic pollution from takeaway food industry in China[J]. Science of The Total Environment, 2023, 904: 166933. doi: 10.1016/j.scitotenv.2023.166933 [78] FASANO E, BONO-BLAY F, CIRILLO T, et al. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging[J]. Food Control, 2012, 27(1): 132-138. doi: 10.1016/j.foodcont.2012.03.005 [79] PACK E C, LEE K Y, JUNG J S, et al. Determination of the migration of plastic additives and non-intentionally added substances into food simulants and the assessment of health risks from convenience food packaging[J]. Food Packaging and Shelf Life, 2021, 30: 100736. doi: 10.1016/j.fpsl.2021.100736 [80] LEE K, GURUDATT N G, HEO W, et al. Ultrasensitive detection and risk assessment of di(2-ethylhexyl) phthalate migrated from daily-use plastic products using a nanostructured electrochemical aptasensor[J]. Sensors and Actuators B: Chemical, 2022, 357: 131381. doi: 10.1016/j.snb.2022.131381 [81] TOPDAS E F. Potential toxic phthalates and heavy metals contamination in vinegars and human health risk assessment[J]. Journal of Food Composition and Analysis, 2023, 122: 105491. doi: 10.1016/j.jfca.2023.105491 [82] LÓPEZ-VÁZQUEZ J, RODIL R, TRUJILLO-RODRÍGUEZ M J, et al. Mimicking human ingestion of microplastics: Oral bioaccessibility tests of bisphenol A and phthalate esters under fed and fasted states[J]. Science of The Total Environment, 2022, 826: 154027. doi: 10.1016/j.scitotenv.2022.154027 [83] ADJEI J K, OFORI A, MEGBENU H K, et al. Health risk and source assessment of semi-volatile phenols, p-chloroaniline and plasticizers in plastic packaged (sachet) drinking water[J]. Science of The Total Environment, 2021, 797: 149008. doi: 10.1016/j.scitotenv.2021.149008 [84] JOSEPH A, PARVEEN N, RANJAN V P, et al. Drinking hot beverages from paper cups: Lifetime intake of microplastics[J]. Chemosphere, 2023, 317: 137844. doi: 10.1016/j.chemosphere.2023.137844 [85] WANG J, WENG X, LIU S, et al. Occurrence, fate, and reduction measures of phthalates in the cooking process: A review[J]. Environment & Health, 2023, 1(5): 300-314. [86] WANG Z, AN C, CHEN X, et al. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering[J]. Journal of Hazardous Materials, 2021, 417: 126036. doi: 10.1016/j.jhazmat.2021.126036 [87] CHANG X, WANG W X. Phthalate acid esters contribute to the cytotoxicity of mask leachate: Cell-based assay for toxicity assessment[J]. Journal of Hazardous Materials, 2023, 459: 132093. doi: 10.1016/j.jhazmat.2023.132093 [88] HUANG Z, FISH W P, SWEENEY J. Leaching rate of diethylhexyl phthalate (DEHP) from PVC containers with IV administrated lipid nanoparticle formulations[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104160. doi: 10.1016/j.jddst.2023.104160 [89] ZHAO E, XIONG X, HU H, et al. Phthalates in plastic stationery in China and their exposure risks to school-aged children[J]. Chemosphere, 2023, 339: 139763. doi: 10.1016/j.chemosphere.2023.139763 [90] LI Y, SHI T, LI X, et al. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement[J]. Environment International, 2022, 164: 107257. doi: 10.1016/j.envint.2022.107257 [91] LIU M, XU H, FENG R, et al. Chemical composition and potential health risks of tire and road wear microplastics from light-duty vehicles in an urban tunnel in China[J]. Environmental Pollution, 2023, 330: 121835. doi: 10.1016/j.envpol.2023.121835 [92] DUEÑAS-MORENO J, MORA A, KUMAR M, et al. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines[J]. Environment International, 2023, 181: 108294. doi: 10.1016/j.envint.2023.108294 [93] MA Y, MU X, GAO R, et al. Maternal exposure to dibutyl phthalate regulates MSH6 crotonylation to impair homologous recombination in fetal oocytes[J]. Journal of Hazardous Materials, 2023, 455: 131540. doi: 10.1016/j.jhazmat.2023.131540 [94] SUBEDI B, SULLIVAN K D, DHUNGANA B. Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA[J]. Environmental Pollution, 2017, 230: 701-708. doi: 10.1016/j.envpol.2017.07.028 [95] ZHAO A, WANG L, PANG X, et al. Phthalates in skin wipes: Distribution, sources, and exposure via dermal absorption[J]. Environmental Research, 2022, 204: 112041. doi: 10.1016/j.envres.2021.112041 [96] HUA L, GUO S, XU J, et al. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students[J]. Science of The Total Environment, 2022, 845: 157251. doi: 10.1016/j.scitotenv.2022.157251 [97] LI X, WANG X, LIU Y, et al. First evidence of occupational and residential exposure to bisphenols associated with an e-waste dismantling site: A case study in China[J]. Ecotoxicology and Environmental Safety, 2023, 263: 115206. doi: 10.1016/j.ecoenv.2023.115206 [98] ANSAR M A, ASSAWADITHALERD M, TIPMANEE D, et al. Occupational exposure to hazards and volatile organic compounds in small-scale plastic recycling plants in Thailand by integrating risk and life cycle assessment concepts[J]. Journal of Cleaner Production, 2021, 329: 129582. doi: 10.1016/j.jclepro.2021.129582 [99] COOK E, DERKS M, VELIS C A. Plastic waste reprocessing for circular economy: A systematic scoping review of risks to occupational and public health from legacy substances and extrusion[J]. Science of The Total Environment, 2023, 859: 160385. doi: 10.1016/j.scitotenv.2022.160385 -