基于SI-ATRP技术制备磁性甲基对硫磷分子印迹聚合物及其吸附性能

焦琳娟, 徐先燕, 吴晓莹, 赵存元. 基于SI-ATRP技术制备磁性甲基对硫磷分子印迹聚合物及其吸附性能[J]. 环境化学, 2020, (1): 89-100. doi: 10.7524/j.issn.0254-6108.2019070503
引用本文: 焦琳娟, 徐先燕, 吴晓莹, 赵存元. 基于SI-ATRP技术制备磁性甲基对硫磷分子印迹聚合物及其吸附性能[J]. 环境化学, 2020, (1): 89-100. doi: 10.7524/j.issn.0254-6108.2019070503
JIAO Linjuan, XU Xianyan, WU Xiaoying, ZHAO Cunyuan. Synthesis of methyl-parathion molecularly imprinted magnetic nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP) and its adsorption properties[J]. Environmental Chemistry, 2020, (1): 89-100. doi: 10.7524/j.issn.0254-6108.2019070503
Citation: JIAO Linjuan, XU Xianyan, WU Xiaoying, ZHAO Cunyuan. Synthesis of methyl-parathion molecularly imprinted magnetic nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP) and its adsorption properties[J]. Environmental Chemistry, 2020, (1): 89-100. doi: 10.7524/j.issn.0254-6108.2019070503

基于SI-ATRP技术制备磁性甲基对硫磷分子印迹聚合物及其吸附性能

    通讯作者: 徐先燕, E-mail: sofiaxxy@hotmail.com
  • 基金项目:

    2017年广东省教育厅青年创新人才类项目(2017KQNCX180),2016年韶关市科技计划项目(201604),2016年度韶关学院科研项目(SZ2016KJ03)和2016年韶关学院大学生创新创业训练计划项目(Sycxcy2016-113)资助.

Synthesis of methyl-parathion molecularly imprinted magnetic nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP) and its adsorption properties

    Corresponding author: XU Xianyan, sofiaxxy@hotmail.com
  • Fund Project: Supported by the Innovation Projects of Department of Education of Guangdong Province(2017KQNCX180), the Science and Technology Foundation of Shaoguan(201604)and Shaoguan University(SZ2016KJ03)and the Undergraduate Training Program for Innovation and Entrepreneurship of Shaoguan University(Sycxcy2016-113).
  • 摘要: 基于DFT计算,优选出甲基对硫磷(MP)和功能单体甲基丙烯酸(MAA),4-乙烯基吡啶(4-VP)的配比为1∶2∶1,采用表面引发原子转移自由基聚合(SI-ATRP)技术,制备了核壳式磁性甲基对硫磷分子印迹聚合物(Fe3O4@MPIPs).通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱仪(FTIR)、X-射线衍射仪(XRD)和振动样品磁强计(VSM)对该磁性印迹聚合物进行了表征,并结合磁固相萃取(M-SPE)技术和气相色谱(GC)研究了其对MP的吸附行为,结果表明,Fe3O4@MPIPs对模板分子MP具有良好的特异性识别作用,在30 min内快速达到吸附平衡,最大吸附量为11.5 mg·g-1;与乐果和马拉硫磷相比,Fe3O4@MPIPs对MP的选择性系数分别为4.57和5.10,相对选择性系数分别为4.11和4.18.气相色谱检测结果表明,该磁性印迹聚合物可用于土豆样品中MP的快速分离富集,其加标回收率为87.4%—99.4%,RSD为3.6%—4.5%;重复使用5次后,Fe3O4@MPIPs回收率仍在90.3%以上,吸附量仍保持在第1次吸附量的82%以上.
  • 加载中
  • [1] 陈珠灵,陈飞,陈红青.高效液相色谱法测定蔬菜中3种有机磷农药残留量[J].福州大学学报(自然科学版), 2015, 33(1

    ):98-100. CHEN Z L, CHEN F, CHEN H Q, Determinationof residual amount of 3 kinds of oranophorus pesticides in vegetable by high performance liquid chromatography[J]. Journal of Fuzhou University (Natural Science Edition), 2015, 33(1):98-100(in Chinese).

    [2] 任朝兴,杨家欢.固相萃取-气相色谱质谱联用法同时测定海水中的甲基对硫磷、马拉硫磷和对硫磷[J].海洋环境科学, 2010, 29(4):586-588.

    REN C X, YANG J H. Determination of methyl parathion, malathion and parathion in seawater by GC/MS with solid phase extraction[J]. Marine Environmental Science, 2010, 29(4):586-588(in Chinese).

    [3] 祝本琼,陈浩,李胜清.溶剂去乳化分散液-液微萃取-高效液相色谱法测定水样中甲基对硫磷[J].华中农业大学学报, 2013, 32(1):63-67.

    ZHU B Q, CHEN H, LI S Q. Solvent demulsification dispersive liquid-liquid microextraction combined with high performance liquid chromatography for determination of methyl parathion in water samples[J]. Journal of Huazhong Agricultural University, 2013, 32(1):63-67(in Chinese).

    [4] PINTO M I, SONTAG G, BERNARDINO R J, et al. Pesticides in water and the performance of the liquid-phase microextraction based techniques. A review[J]. Microchemical Journal, 2010, 96(2):225-237.
    [5] 王一龙,曾昭睿,杨敏,等.固相微萃取联用气相色谱测定有机磷农药[J].武汉理工大学学报, 2005, 27(10):41-43

    ,50. WANG Y L, ZENG Z R, YANG M, et al. Determination of organophosphorous pesticides by solid-phase microextraction coupled to gas chromatography[J]. Journal of Wuhan University of Technology, 2005, 27(10):41-43,50(in Chinese).

    [6] BOGIALLII S, DI CORCIA A. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs[J]. Journal of Biochemical and Biophysical Methods, 2007, 70(2):163-179.
    [7] XIAO L Z, HONG Y N, SHENG X Z, et al. Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples[J]. Analytical&Bioanalytical Chemistry, 2010, 397(2):791-798.
    [8] VASONCELOS I, FERNANDES C. Magnetic solid phase extraction for determination of drugs in biological matrices[J]. TrAC Trends in Analytical Chemistry, 2017, 89:41-52.
    [9] HASSAN A H A, MOURA S L, ALI F H M, et al. Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer[J]. Biosensors&Bioelectronics, 2018, 118:181-187.
    [10] ZHANG D, YU D, ZHAO W, et al. A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl[J]. Analyst, 2012, 137(11):2629-2636.
    [11] UZURIAGA-SÁNCHEZ R J, KHAN S, WONG A, et al. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples[J]. Food Chemistry, 2016, 190:460-467.
    [12] WANG J, WEI J. Selective and simultaneous removal of dibenzothiophene and 4-methyldibenzothiophene using double-template molecularly imprinted polymers on the surface of magnetic mesoporous silica[J]. Journal of Materials Chemistry A, 2017, 5(9):4651-4659.
    [13] WANG F R, LEE G J, HARIDHARAN N, et al. Electrochemical sensor using molecular imprinting polymerization modified electrodes to detect methyl parathion in environmental media[J]. Electrocatalysis, 2018, 9(1):1-9.
    [14] MOURA S L, FAJARARDO L M, CUNHA L D, et al. Theoretical and experimental study for the biomimetic recognition of levothyroxine hormone on magnetic molecularly imprinted polymer[J]. Biosensors&Bioelectronics, 2018, 107:203-210.
    [15] XU S, GUO C, LI Y, et al. Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils[J]. Journal of Hazardous Materials, 2014, 264:34-41.
    [16] DIRION B, COBB Z, SCHILLINGER E, et al. Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design[J]. Journal of the American Chemical Society, 2003;125(49):15101-15109.
    [17] LIU Y, HE Y, JIN Y, et al. Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid[J]. Journal of Chromatography A, 2014, 1323:11-17.
    [18] FENG X, WU T, YU B, et al. Hydrophilic surface molecularly imprinted naringin prepared via reverse atom transfer radical polymerization with excellent recognition ability in a pure aqueous phase[J]. RSC Advances, 2017, 7(45):28082-28091.
    [19] PAN X, TASDELEN M A, LAUN J, et al. Photomediated controlled radical polymerization[J]. Progress in Polymer Science, 2016, 62:73-125.
    [20] ZOPPE J O, ATAMAN N C, MOCNY P, et al. Surface-initiated controlled radical polymerization:State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes[J]. Chemical Reviews, 2017, 117(3):1105-1318.
    [21] TURAN E, ŞAHIN F. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A[J]. Sensors and Actuators B:Chemical, 2016, 227:668-676.
    [22] FERNANDES LS, HOMEM-DE-MELLO P, DE LIMA EC, et al. Rational design of molecularly imprinted polymers for recognition of cannabinoids:A structure-property relationship study[J]. European Polymer Journal, 2015;71:364-371.
    [23] ALIZADEH T, SHAMKHALI A N. Chiral resolution of salbutamol in plasma sample by a new chiral ligand-exchange chromatography method after its extraction with nano-sized imprinted polymer[J]. Journal of Chromatography B, 2016, 1009:96-106.
    [24] QIU X, XU X Y, LIANG Y, et al. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples[J]. Journal of Chromatography A, 2016, 1429:79-85.
    [25] WU H, LI X, MENG S, et al. A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers[J]. Polymer Bulletin, 2018, 75(5):1981-1996.
    [26] RAHANGDALE D, KUMAR A. Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):1828-1839.
    [27] COWEN T, KARIM K, PILETSKY S. Computational approaches in the design of synthetic receptors:A review[J]. Analytica Chimica Acta, 2016, 936:62-74.
    [28] SHAABAN AF, FADEL DA, MAHMOUD AA, et al. Removal of Pb (Ⅱ), Cd (Ⅱ), Mn (Ⅱ), and Zn (Ⅱ) using iminodiacetate chelating resin by batch and fixed-bed column methods[J]. Desalination and Water Treatment, 2013, 51(28-30):5526-5536.
    [29] LIU Y, HUANG Y, LIU J, et al. Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis[J]. Journal of Chromatography A, 2012, 1246:15-21.
    [30] DUAN F, CHEN C, ZHAO X, et al. Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution[J]. Environmental Science:Nano, 2016, 3(1):213-222.
  • 加载中
计量
  • 文章访问数:  1367
  • HTML全文浏览数:  1367
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-05
  • 刊出日期:  2020-01-01

基于SI-ATRP技术制备磁性甲基对硫磷分子印迹聚合物及其吸附性能

    通讯作者: 徐先燕, E-mail: sofiaxxy@hotmail.com
  • 1. 韶关学院化学与环境工程学院, 韶关, 512005;
  • 2. 中山大学化学学院, 广州, 510275
基金项目:

2017年广东省教育厅青年创新人才类项目(2017KQNCX180),2016年韶关市科技计划项目(201604),2016年度韶关学院科研项目(SZ2016KJ03)和2016年韶关学院大学生创新创业训练计划项目(Sycxcy2016-113)资助.

摘要: 基于DFT计算,优选出甲基对硫磷(MP)和功能单体甲基丙烯酸(MAA),4-乙烯基吡啶(4-VP)的配比为1∶2∶1,采用表面引发原子转移自由基聚合(SI-ATRP)技术,制备了核壳式磁性甲基对硫磷分子印迹聚合物(Fe3O4@MPIPs).通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱仪(FTIR)、X-射线衍射仪(XRD)和振动样品磁强计(VSM)对该磁性印迹聚合物进行了表征,并结合磁固相萃取(M-SPE)技术和气相色谱(GC)研究了其对MP的吸附行为,结果表明,Fe3O4@MPIPs对模板分子MP具有良好的特异性识别作用,在30 min内快速达到吸附平衡,最大吸附量为11.5 mg·g-1;与乐果和马拉硫磷相比,Fe3O4@MPIPs对MP的选择性系数分别为4.57和5.10,相对选择性系数分别为4.11和4.18.气相色谱检测结果表明,该磁性印迹聚合物可用于土豆样品中MP的快速分离富集,其加标回收率为87.4%—99.4%,RSD为3.6%—4.5%;重复使用5次后,Fe3O4@MPIPs回收率仍在90.3%以上,吸附量仍保持在第1次吸附量的82%以上.

English Abstract

参考文献 (30)

目录

/

返回文章
返回