腐殖酸负载对萘和1-萘酚在生物炭上吸附动力学的影响

张萌, 吕耀斌, 朱一滔, 施羲渊, 杨庆, 王喜龙, 李威, 李萍萍. 腐殖酸负载对萘和1-萘酚在生物炭上吸附动力学的影响[J]. 环境化学, 2020, (1): 101-109. doi: 10.7524/j.issn.0254-6108.2019081511
引用本文: 张萌, 吕耀斌, 朱一滔, 施羲渊, 杨庆, 王喜龙, 李威, 李萍萍. 腐殖酸负载对萘和1-萘酚在生物炭上吸附动力学的影响[J]. 环境化学, 2020, (1): 101-109. doi: 10.7524/j.issn.0254-6108.2019081511
ZHANG Meng, LYU Yaobin, ZHU Yitao, SHI Xiyuan, YANG Qing, WANG Xilong, LI Wei, LI Pingping. Impact of humic acid coating on sorption kinetics of naphthalene and 1-naphthol on biochar[J]. Environmental Chemistry, 2020, (1): 101-109. doi: 10.7524/j.issn.0254-6108.2019081511
Citation: ZHANG Meng, LYU Yaobin, ZHU Yitao, SHI Xiyuan, YANG Qing, WANG Xilong, LI Wei, LI Pingping. Impact of humic acid coating on sorption kinetics of naphthalene and 1-naphthol on biochar[J]. Environmental Chemistry, 2020, (1): 101-109. doi: 10.7524/j.issn.0254-6108.2019081511

腐殖酸负载对萘和1-萘酚在生物炭上吸附动力学的影响

    通讯作者: 张萌, E-mail: zhangmeng@njfu.edu.cn
  • 基金项目:

    国家自然科学基金(41701555,31700441),南京林业大学大学生创新训练计划项目(2019NFUSPITP0434)和江苏高校优势学科建设工程项目(PAPD)资助.

Impact of humic acid coating on sorption kinetics of naphthalene and 1-naphthol on biochar

    Corresponding author: ZHANG Meng, zhangmeng@njfu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41701555, 31700441),Students Practice Innovation and Training Program of Nanjing Forestry University(2019NFUSPITP0434)and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
  • 摘要: 进入环境的生物炭对有机污染物的吸附过程受到普遍共存的溶解性有机质的影响.本研究将两种腐殖酸组分负载在以玉米秸秆为原料、不同炭化温度下(200、400、600℃)制得的生物炭上,考察极性和非极性有机污染物萘和1-萘酚在原始和腐殖酸负载生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.结果表明,拟二级和双室一级动力学模型均能较好地描述动力学吸附过程.腐殖酸负载对生物炭上萘和1-萘酚的吸附动力学有显著影响,使得平衡吸附量(Qe)下降,而表观吸附速率提高.致密的芳香碳组分和纳米级孔隙主要对萘和1-萘酚在生物炭上的慢吸附单元起作用,腐殖酸负载降低了生物炭的芳香化程度和孔隙度,慢吸附对总吸附的贡献(fslow)降低.生物炭内部有机碳的致密性降低,使得萘和1-萘酚分子容易扩散进入生物炭颗粒内部,加之表面积和孔隙度减少,缩短吸附平衡时间,两种化合物的慢吸附速率常数(kslow)均提高.负载腐殖酸后,两种化合物的快吸附速率常数(kfast)的变化却不同.腐殖酸负载向生物炭表面引入含氧极性官能团,阻碍萘分子向表面疏水吸附位点扩散,使得萘的kfast下降;而由于1-萘酚是极性有机物,除了疏水作用,其结构中的—OH能通过氢键与生物炭表面相互作用,其kfast反而升高.
  • 加载中
  • [1] OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar:Current status and perspectives[J]. Bioresource Technology, 2017, 246:110-122.
    [2] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33.
    [3] LIAN F, SUN B, CHEN X, et al. Effect of humic acid (HA) on sulfonamide sorption by biochars[J]. Environmental Pollution, 2015, 204:306-312.
    [4] LOU L P, LIU F X, YUE Q K, et al. Influence of humic acid on the sorption of pentachlorophenol by aged sediment amended with rice-straw biochar[J]. Applied Geochemistry, 2013, 33:76-83.
    [5] XIAO X Y, LI F L, HUANG J X, et al. Reduced adsorption of propanil to black carbon:Effect of dissolved organic matter loading mode and molecule size[J]. Environmental Toxicology and Chemistry, 2012, 31(6):1187-1193.
    [6] KWON S, PIGNATELLO J J. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):Pseudo pore blockage by model lipid components and its implications for N-2-probed surface properties of natural sorbents[J]. Environmental Science & Technology, 2005, 39(20):7932-7939.
    [7] PIGNATELLO J J, KWON S, LU Y F. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):Attenuation of surface activity by humic and fulvic acids[J]. Environmental Science & Technology, 2006, 40(24):7757-7763.
    [8] QIU Y P, XIAO X Y, CHENG H Y, et al. Influence of environmental factors on pesticide adsorption by black carbon:pH and model dissolved organic matter[J]. Environmental Science & Technology, 2009, 43(13):4973-4978.
    [9] WEN B, HUANG R X, LI R J, et al. Effects of humic acid and lipid on the sorption of phenanthrene on char[J]. Geoderma, 2009, 150(1-2):202-208.
    [10] SUN K, KANG M J, ZHANG Z Y, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 2013, 47(20):11473-11481.
    [11] KANG S H, XING B S. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environmental Science & Technology, 2005, 39(1):134-140.
    [12] SUN K, JIN J, KEILUWEIT M, et al. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars[J]. Bioresource Technology, 2012, 118:120-127.
    [13] SUN K, RO K, GUO M X, et al. Sorption of bisphenol A, 17 alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars[J]. Bioresource Technology, 2011, 102(10):5757-5763.
    [14] WANG Z Y, HAN L F, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures[J]. Chemosphere, 2016, 144:285-291.
    [15] WU C, ZHANG X L, LI G B. Effects of humic acid coatings on phenanthrene sorption to black carbon[J]. Journal of Environmental Sciences-China, 2007, 19(10):1189-1192.
    [16] ZHANG M, SHU L, SHEN X F, et al. Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds[J]. Environmental Pollution, 2014, 195:84-90.
    [17] HU E Z, SHANG S Y, WANG N N, et al. Influence of the pyrolytic temperature and feedstock on the characteristics and naphthalene adsorption of crop straw-derived biochars[J]. Bioresources, 2019, 14(2):2885-2902.
    [18] ZHONG Z W, ZHONG J K, YANG Q Z, et al. Sorption of phenanthrene by biochar produced from potato straws[J]. Fresenius Environmental Bulletin, 2018, 27(3):1814-1823.
    [19] 汪华, 方程冉, 王群, 等. 腐殖酸对生物炭吸附四环素的影响[J]. 环境污染与防治,2018,40(4):423-428.

    WANG H, FANG C R, WANG Q, et al. Effect of humic acid on the adsorption of tetracycline by biochar[J]. Environmental Pollution & Control, 2018, 40(4):423-428(in Chinese).

    [20] CHEN Z M, CHEN B L, CHIOU C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J]. Environmental Science & Technology, 2012, 46(20):11104-11111.
    [21] PIGNATELLO J J, XING B S. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environmental Science & Technology, 1996, 30(1):1-11.
    [22] 陈建,王朋,曹艳贝,等. 生物炭的制备温度及酸处理对卡马西平的吸附动力学影响[J]. 环境化学,2016,35(7):1461-1467.

    CHEN J, WANG P, CAO Y B, et al. Impact of pyrolytic temperature and acid wash on adsorption kinetics of carbamazepine on biochar[J]. Environmental Chemistry, 2016, 35(7):1461-1467(in Chinese).

    [23] 周尊隆,卢媛,孙红文. 菲在不同性质黑炭上的吸附动力学和等温线研究[J]. 农业环境科学学报,2010,29(3):476-480.

    ZHOU Z L, LU Y, SUN H W. Sorption kinetics and isotherms of phenanthrene in charcoals with different properties[J]. Journal of Agro-Environment Science, 2010, 29(3):476-480(in Chinese).

  • 加载中
计量
  • 文章访问数:  1472
  • HTML全文浏览数:  1472
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-15
  • 刊出日期:  2020-01-01

腐殖酸负载对萘和1-萘酚在生物炭上吸附动力学的影响

    通讯作者: 张萌, E-mail: zhangmeng@njfu.edu.cn
  • 1. 南京林业大学南方现代林业协同创新中心, 生物与环境学院, 南京, 210037;
  • 2. 北京大学城市与环境学院, 地表过程分析与模拟教育部重点实验室, 北京, 100871
基金项目:

国家自然科学基金(41701555,31700441),南京林业大学大学生创新训练计划项目(2019NFUSPITP0434)和江苏高校优势学科建设工程项目(PAPD)资助.

摘要: 进入环境的生物炭对有机污染物的吸附过程受到普遍共存的溶解性有机质的影响.本研究将两种腐殖酸组分负载在以玉米秸秆为原料、不同炭化温度下(200、400、600℃)制得的生物炭上,考察极性和非极性有机污染物萘和1-萘酚在原始和腐殖酸负载生物炭上的吸附动力学,分别应用拟一级、拟二级和双室一级3种动力学模型对实验数据进行拟合.结果表明,拟二级和双室一级动力学模型均能较好地描述动力学吸附过程.腐殖酸负载对生物炭上萘和1-萘酚的吸附动力学有显著影响,使得平衡吸附量(Qe)下降,而表观吸附速率提高.致密的芳香碳组分和纳米级孔隙主要对萘和1-萘酚在生物炭上的慢吸附单元起作用,腐殖酸负载降低了生物炭的芳香化程度和孔隙度,慢吸附对总吸附的贡献(fslow)降低.生物炭内部有机碳的致密性降低,使得萘和1-萘酚分子容易扩散进入生物炭颗粒内部,加之表面积和孔隙度减少,缩短吸附平衡时间,两种化合物的慢吸附速率常数(kslow)均提高.负载腐殖酸后,两种化合物的快吸附速率常数(kfast)的变化却不同.腐殖酸负载向生物炭表面引入含氧极性官能团,阻碍萘分子向表面疏水吸附位点扩散,使得萘的kfast下降;而由于1-萘酚是极性有机物,除了疏水作用,其结构中的—OH能通过氢键与生物炭表面相互作用,其kfast反而升高.

English Abstract

参考文献 (23)

目录

/

返回文章
返回