ZIF-67高效吸附去除水中的洛克沙胂
Efficiently adsorptive removal towards roxarsone with ZIF-67
-
摘要: 作为一类很有应用前景的金属有机骨架材料(MOFs),沸石咪唑酯骨架(ZIFs)由于具有比表面积大、孔隙可调、易于实现内外位点功能化等优点,广泛受到人们的关注.作为ZIFs材料的一种,具有上述特点的沸石咪唑酯骨架-67(ZIF-67)由Co2+离子和2-甲基咪唑通过配位及自组装形成.ZIF-67拥有高度稳定的结构,在吸附、分子分离、传感、催化等领域有着广泛的应用.本研究利用一种环境友好型的方法合成了ZIF-67,并用来吸附去除水中的洛克沙胂.探究了吸附过程中的吸附动力学、吸附热力学行为和吸附机理.实验结果表明,ZIF-67对水中的洛克沙胂具有优良的吸附性能,在pH=6时最大吸附量可以达到172.45 mg·g-1,吸附动力学与热力学行为分别符合准二级动力学和Langmuir吸附等温模型.ZIF-67对洛克沙胂的吸附机理可能是静电吸附和离子交换作用.通过固定床小柱实验表明ZIF-67具有很好的实际应用性能.Abstract: As a promising family of metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) draw increasing attention due to their outstanding properties including high surface area, tunable porosity, easily realized functionalization on both internal and external sites. As one of the ZIFs, Zeolitic imidazolate frameworks-67 (ZIF-67) with the above characteristics is composed of metal ions (Co2+) and 2-methylimidazole linkers. With a highly stable structure, ZIF-67 have been used in several application fields, such as adsorption, separation, sensing, catalysis and so on. In this study, ZIF-67 was prepared by using an eco-friendly method, which was further used to carry out the adsorptive removal of roxarsone from simulated wastewater. The adsorption kinetics, adsorption isotherm and possible adsorption mechanism were investigated. The results revealed that ZIF-67 exhibited good adsorption performance towards roxarsone, with maximum uptake capacity being 172.45 mg·g-1 at pH=6. The adsorption kinetics and isotherm behaviors were well fitted with pseudo-second-order kinetic model and Langmuir model, respectively. The possible adsorption mechanism of ZIF-67 towards roxarsone was proposed, in which the electrostatic interaction and ion-exchange contributed the efficient adsorption activity. Finally, the fixed-bed column experiments implied that ZIF-67 could be potentially applied to achieve large-scale roxarsone removal from the real polluted water.
-
Key words:
- ZIF-67 /
- roxarsone /
- green synthesis /
- adsorption
-
[1] SARKAR A, PAUL B. The global menace of arsenic and its conventional remediation-A critical review[J]. Chemosphere, 2016, 158:37-49. [2] MOHAMMED Abdul K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects:A review[J]. Environmental Toxicol ogy and Pharmacology, 2015, 40(3):828-846. [3] MOHAN D, PITTMAN C U. Arsenic removal from water/wastewater using adsorbents-A critical review[J]. Journal of Hazardous Materials, 2007, 142(1):1-53. [4] SMITH A H, LOPIPERO P A, BATES M N, et al. Arsenic epidemiology and drinking water standards[J]. Science, 2002, 296(5576):2145. [5] ZHANG A Y, HUANG N H, ZHANG C, et al. Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution[J]. Chemical Engineering Journal, 2018, 344:1-11. [6] WANG L, CHENG H. Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-arsanilic acid[J]. Environmental Science & Technology, 2015, 49(6):3473-3481. [7] MOHAMMED ABDUL K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects:A review[J]. Environmental Toxicology and Pharmacology, 2015, 40(3):828-846. [8] LIN Z J, ZHENG H Q, ZENG Y N, et al. Effective and selective adsorption of organoarsenic acids from water over a Zr-based metal-organic framework[J]. Chemical Engineering Journal, 2019, 378:122196. [9] FEI J, WANG T, ZHOU Y, et al. Aromatic organoarsenic compounds (AOCs) occurrence and remediation methods[J]. Chemosphere, 2018, 207:665-675. [10] LI B, ZHU X, HU K, et al. Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution[J]. Journal of Hazardous Materials, 2016, 302:57-64. [11] BEDNAR A J, GARBARINO J R, FERRER I, et al. Photodegradation of roxarsone in poultry litter leachates[J]. Science of The Total Environment, 2003, 302(1):237-245. [12] WANG C, LUAN J, WU C. Metal-organic frameworks for aquatic arsenic removal[J]. Water Research, 2019, 158:370-382. [13] SIERRA-ALVAREZ R, CORTINAS I, FIELD J A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds[J]. Journal of Hazardous Materials, 2010, 175(1):352-358. [14] POON L, YOUNUS S, WILSON L D. Adsorption study of an organo-arsenical with chitosan-based sorbents[J]. Journal of Colloid and Interface Science, 2014, 420:136-144. [15] HU J, TONG Z, CHEN G, et al. Adsorption of roxarsone by iron (hydr)oxide-modified multiwalled carbon nanotubes from aqueous solution and its mechanisms[J]. International Journal of Environmental Science and Technology, 2014, 11(3):785-794. [16] WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy Environmental Science, 2014, 7(9):2831-2867. [17] YI X H, MA S Q, DU X D, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(Ⅵ) reduction performance under white light[J]. Chemical Engineering Journal, 2019, 375:121944. [18] 王茀学, 王崇臣, 王鹏, 等. UiO系列金属-有机骨架的合成方法与应用[J]. 无机化学学报, 2017, 33(5):713-737. WANG F X, WANG C C, WANG P, et al. Syntheses and applications of UiO series of MOFs[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(5):713-737(in Chinese).
[19] WANG C C, YI X H, WANG P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 247:24-48. [20] WANG X, LIU W, FU H, et al. Simultaneous Cr(Ⅵ) reduction and Cr(Ⅲ) removal of bifunctional MOF/Titanate nanotube composites[J]. Environmental Pollution, 2019, 249:502-511. [21] CHEN D D, YI X H, ZHAO C, et al. Polyaniline modified MIL-100(Fe) for enhanced photocatalytic Cr(Ⅵ) reduction and tetracycline degradation under white light[J]. Chemosphere, 2020, 245:125659. [22] LI J J, WANG C C, FU H F, et al. High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal-organic framework[J]. Dalton Transactions, 2017, 46(31):10197-10201. [23] DU X D, WANG C C, LIU J G, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes:Performance and mechanism[J]. Journal of Colloid and Interface Science, 2017, 506:437-441. [24] WANG C Y, FU H, WANG P, et al. Highly sensitive and selective detect of p-arsanilic acid with a new water-stable europium metal-organic framework[J]. Applied Organometallic Chemistry, 2019, 33(8):e5021. [25] LIU A, WANG C C, WANG C Z, et al. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers[J]. Journal of Colloid and Interface Science, 2018, 512:730-739. [26] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865):939. [27] JIANG J Q, YANG C X, YAN X P. Zeolitic Imidazolate Framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution[J]. ACS Applied Materials & Interfaces, 2013, 5(19):9837-9842. [28] SU S, CHE R, LIU Q, et al. Zeolitic Imidazolate Framework-67:A promising candidate for recovery of uranium (Ⅵ) from seawater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 547:73-80. [29] ANDREW LIN K Y, LEE W D. Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole[J]. Chemical Engineering Journal, 2016, 284:1017-1027. [30] LI X, GAO X, AI L, et al. Mechanistic insight into the interaction and adsorption of Cr(Ⅵ) with zeolitic imidazolate framework-67 microcrystals from aqueous solution[J]. Chemical Engineering Journal, 2015, 274:238-246. [31] QIN J, WANG S, WANG X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst[J]. Applied Catalysis B:Environmental, 2017, 209:476-482. [32] PARK H, AMARANATHA R D, KIM Y, et al. Zeolitic imidazolate framework-67(ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation[J]. Solid State Sciences, 2016, 62:82-89. [33] DMELLO M E, SUNDARAM N G, KALIDINDI S B. Assembly of ZIF-67 metal-organic framework over tin oxide nanoparticles for synergistic chemiresistive CO2 gas sensing[J]. Chemistry-A European Journal, 2018, 24(37):9220-9223. [34] CRAVILLON J, M NZER S, LOHMEIER S J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chemistry of Materials, 2009, 21(8):1410-1412. [35] LI Z, JIANG Z, ZHU W, et al. Facile preparation of CoSe2 nano-vesicle derived from ZIF-67 and their application for efficient water oxidation[J]. Applied Surface Science, 2020, 504:144368. [36] 王家宏, 雷思莉. 磺酸基改性磁性吸附剂去除水中的Cu(Ⅱ)[J]. 环境化学, 2019, 38(8):1785-1792. WANG J H, LEI S L. Removal of Cu(Ⅱ) by sulfonic acid modified magnetic adsorbent[J]. Environmental Chemistry, 2019,38(8):1785-1792(in Chinese).
[37] 郭广亮, 王崇臣, 王鹏. 生物陶吸附酸性品红的性能[J]. 环境化学, 2014, 33(5):805-811. GUO G L, WANG C C, WANG P. Adsorption of acid fuchsin on biopottery:Kinetic and thermodynamic studies[J]. Environmental Chemistry, 2014, 33(5):805-811(in Chinese).
[38] 胡一帆, 王文兵, 仵彦卿. 弱磁场强化零价铁去除水中砷的效果[J]. 环境化学, 2019, 38(5):1074-1081. HU Y F, WANG W B, WU Y Q. The role of weak magnetic field in accelerating the removal of arsenic by zero-valent iron[J]. Environmental Chemistry, 2019, 38(5):1074-1081(in Chinese).
[39] TIAN C, ZHAO J, OU X, et al. Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations[J]. Environmental Science & Technology, 2018, 52(6):3466-3475. [40] HU Q, LIU Y, GU X, et al. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J]. Chemosphere, 2017, 181:328-336. [41] MA J, ZHUANG Y, YU F. Equilibrium, kinetic and thermodynamic adsorption studies of organic pollutants from aqueous solution onto CNT/C@Fe/chitosan composites[J]. New Journal of Chemistry, 2015, 39(12):9299-9305. [42] JUN J W, TONG M, JUNG B K, et al. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water:Plausible mechanism of adsorption and water purification[J]. Chemistry-A European Journal, 2015, 21(1):347-354. [43] 张佳, 任秉雄, 王鹏, 等. 山茶籽粉吸附亚甲基蓝的性能研究[J]. 环境化学, 2013, 32(8):1539-1545. ZHANG J, REN B X, WANG P, et al. Mechanistic study on adsorption of methylene blue on tea seed powder[J]. Environmental Chemistry, 2013, 32(8):1539-1545(in Chinese).
[44] 谢超然, 王兆炜, 朱俊民, 等. 核桃青皮生物炭对重金属铅、铜的吸附特性研究[J]. 环境科学学报, 2016, 36(4):1190-1198. XIE C R,WANG Z W,ZHU J M,et al.Adsorption of lead and copper from aqueous solutions on biochar produced from walnut green husk[J].Acta Scientiae Circumstantiae,2016,36(4):1190-1198(in Chinese).
[45] DU X D, WANG C C, ZHONG J, et al. Highly efficient removal of Pb2+ by a polyoxomolybdate-based organic-inorganic hybrid material {(4-Hap)4[Mo8O26]}[J]. Journal of Environmental Chemical Engineering, 2017, 5(2):1866-1873. [46] HE X, DENG F, SHEN T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks:Engineering exploration and mechanism insight[J]. Journal of Colloid and Interface Science, 2019, 539:223-234. [47] 张华夏, 石林. 羧甲基纤维素钠稳定纳米硫化亚铁吸附砷研究[J]. 水处理技术, 2019, 45(4):37-42. ZHANG H X, SHI L. Study on adsorption of arsenic on carboxymethylcellulose sodium stabilized ferrous sulfide nanoparticles[J]. Technology of Water Treatment, 2019, 45(4):37-42(in Chinese).
[48] JIAN M, LIU B, ZHANG G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465:67-76. [49] YU W, LUO M, YANG Y, et al. Metal-organic framework (MOF) showing both ultrahigh As(Ⅴ) and As(Ⅲ) removal from aqueous solution[J]. Journal of Solid State Chemistry, 2019, 269:264-270. [50] 李松原, 梁晓怿, 林云, 等. 活性炭流化床对VOCs的吸附条件及吸附边界曲线的研究[J]. 现代化工, 2018, 38(8):166-171. LI S Y, LIANG X Y, LIN Y, et al. Study on adsorption conditions and adsorption boundary condition curve of activated carbon fluidized bed to VOCs[J]. Modern Chemical Industry, 2018, 38(8):166-171(in Chinese).
[51] SUI J, WANG L, ZHAO W, et al. Iron-naphthalenedicarboxylic acid gels and their high efficiency in removing arsenic(Ⅴ)[J]. Chemical Communications, 2016, 52(43):6993-6996. [52] SARACCO G, VANKOVA S, PAGLIANO C, et al. Outer Co(Ⅱ) ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid water[J]. Physical Chemistry Chemical Physics, 2014, 16(13):6139-6145. [53] LI J, WU Y N, LI Z, et al. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water[J]. The Journal of Physical Chemistry C, 2014, 118(47):27382-27387. [54] JIANG X, CHEN H Y, LIU L L, et al. Fe3O4 embedded ZIF-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone[J]. Journal of Alloys and Compounds, 2015, 646:1075-1082.
计量
- 文章访问数: 4837
- HTML全文浏览数: 4837
- PDF下载数: 144
- 施引文献: 0