细菌外囊泡介导抗生素抗性基因水平转移的研究进展

王绍宇, 李香会, 胥娇娇, 温馨, 吴银宝. 细菌外囊泡介导抗生素抗性基因水平转移的研究进展[J]. 生态毒理学报, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001
引用本文: 王绍宇, 李香会, 胥娇娇, 温馨, 吴银宝. 细菌外囊泡介导抗生素抗性基因水平转移的研究进展[J]. 生态毒理学报, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001
Wang Shaoyu, Li Xianghui, Xu Jiaojiao, Wen Xin, Wu Yinbao. Advance on Bacterial Extracellular Vesicles Mediating Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001
Citation: Wang Shaoyu, Li Xianghui, Xu Jiaojiao, Wen Xin, Wu Yinbao. Advance on Bacterial Extracellular Vesicles Mediating Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001

细菌外囊泡介导抗生素抗性基因水平转移的研究进展

    作者简介: 王绍宇(2003-),男,本科生,研究方向为抗生素抗性基因,E-mail:790216639@qq.com
    通讯作者: 吴银宝,E-mail:wuyinbao@scau.edu.cn
  • 基金项目:

    广东省基础与应用基础研究基金资助项目(2023A1515110839);广东省重点领域研发计划课题(2023B0202060001);国家资助博士后研究人员计划(GZC20240507)

  • 中图分类号: X171.5

Advance on Bacterial Extracellular Vesicles Mediating Horizontal Transfer of Antibiotic Resistance Genes

    Corresponding author: Wu Yinbao, wuyinbao@scau.edu.cn
  • Fund Project:
  • 摘要: 胞外囊泡是参与细胞间的物质传递和信息交流的重要媒介。近年来,细菌通过分泌外囊泡装载新型环境污染物抗生素抗性基因(antibiotic resistance genes, ARGs)在细菌间发生基因水平转移已被确认为ARGs水平转移的一种新途径。本文介绍了细菌外囊泡的概念、来源和功能,明确了细菌外囊泡在细胞通信和生物过程调控中的重要作用,说明细菌外囊泡介导ARGs水平转移的机制,明确细菌外囊泡在抗生素抗性基因传播中的关键作用。重点探讨了细菌外囊泡介导ARGs传播的影响因素及对生态环境的危害。本文以囊泡融合传播ARGs的新途径为切入点,综述了细菌外囊泡介导的ARGs在环境中发生水平转移的特征与机制,进一步完善了ARGs在环境中的分布和传播特征,对更深入地开发针对抗生素耐药性的阻控和削减技术具有重要意义。
  • 加载中
  • Alberro A, Iparraguirre L, Fernandes A, et al. Extracellular vesicles in blood: Sources, effects, and applications[J]. International Journal of Molecular Sciences, 2021, 22(15): 8163
    Deatherage B L, Cookson B T. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life[J]. Infection and Immunity, 2012, 80(6): 1948-1957
    Cui Y, Gao J Y, He Y L, et al. Plant extracellular vesicles[J]. Protoplasma, 2020, 257(1): 3-12
    Wang J, Ding Y, Wang J Q, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells[J]. The Plant Cell, 2010, 22(12): 4009-4030
    Domingues S, Nielsen K M. Membrane vesicles and horizontal gene transfer in prokaryotes[J]. Current Opinion in Microbiology, 2017, 38: 16-21
    van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228
    Orench-Rivera N, Kuehn M J. Environmentally controlled bacterial vesicle-mediated export[J]. Cellular Microbiology, 2016, 18(11): 1525-1536
    O’Brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 585-606
    Kim S I, Ha J Y, Choi S Y, et al. Use of bacterial extracellular vesicles for gene delivery to host cells[J]. Biomolecules, 2022, 12(9): 1171
    Cheng Y, Schorey J S. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing[J]. EMBO Reports, 2019, 20(3): e46613
    Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery[J]. Environmental Microbiology, 2013, 15(2): 347-354
    Levy D, Do M A, Brown A, et al. Genetic labeling of extracellular vesicles for studying biogenesis and uptake in living mammalian cells[J]. Methods in Enzymology, 2020, 645: 1-14
    Tan Z L, Li J F, Luo H M, et al. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy[J]. Frontiers in Pharmacology, 2022, 13: 1006299
    Janda M, Robatzek S. Extracellular vesicles from phytobacteria: Properties, functions and uses[J]. Biotechnology Advances, 2022, 58: 107934
    黄海宁, 黄乾生. 细菌胞外囊泡的研究进展[J]. 微生物学报, 2022, 62(5): 1613-1628

    Huang H N, Huang Q S. Research progress on extracellular vesicles of bacteria[J]. Acta Microbiologica Sinica, 2022, 62(5): 1613-1628(in Chinese)

    Chang X L, Fang L Q, Bai J, et al. Characteristics and changes of DNA in extracellular vesicles[J]. DNA and Cell Biology, 2020, 39(9): 1486-1493
    Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes[J]. The Prostate, 2014, 74(14): 1379-1390
    Tan Z L, Li J F, Luo H M, et al. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy[J]. Frontiers in Pharmacology, 2022, 13: 1006299
    Fan S J, Chen J Y, Tang C H, et al. Edible plant extracellular vesicles: An emerging tool for bioactives delivery[J]. Frontiers in Immunology, 2022, 13: 1028418
    Boccia E, Alfieri M, Belvedere R, et al. Plant hairy roots for the production of extracellular vesicles with antitumor bioactivity[J]. Communications Biology, 2022, 5(1): 848
    Choi J W, Kim S C, Hong S H, et al. Secretable small RNAs via outer membrane vesicles in periodontal pathogens[J]. Journal of Dental Research, 2017, 96(4): 458-466
    Yáñez-Mó M, Siljander P R M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. Journal of Extracellular Vesicles, 2015, 4: 27066
    周舒扬, 张丕奇, 戴肖东, 等. 细菌外膜囊泡(OMV)研究进展[J]. 微生物学杂志, 2021, 41(6): 83-89

    Zhou S Y, Zhang P Q, Dai X D, et al. Advances in bacterial outer membrane vesicles (OMV)[J]. Journal of Microbiology, 2021, 41(6): 83-89(in Chinese)

    Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24
    Hernández-Cervantes R, Méndez-Díaz M, Prospéro-García Ó, et al. Immunoregulatory role of cannabinoids during infectious disease[J]. Neuroimmunomodulation, 2017, 24(4/5): 183-199
    Lee J, Kim S H, Choi D S, et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis[J]. Proteomics, 2015, 15(19): 3331-3337
    Kahn M E, Barany F, Smith H O. Transformasomes: Specialized membranous structures that protect DNA during Haemophilus transformation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(22): 6927-6931
    Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery[J]. Environmental Microbiology, 2013, 15(2): 347-354
    Chen J W, Zhang H F, Wang S Q, et al. Inhibitors of bacterial extracellular vesicles[J]. Frontiers in Microbiology, 2022, 13: 835058
    Ahmed A A Q, McKay T J M. Environmental and ecological importance of bacterial extracellular vesicles (BEVs)[J]. Science of the Total Environment, 2024, 907: 168098
    Toyofuku M, Schild S, Kaparakis-Liaskos M, et al. Composition and functions of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2023, 21(7): 415-430
    Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24
    Andreoni F, Toyofuku M, Menzi C, et al. Antibiotics stimulate formation of vesicles in Staphylococcus aureus in both phage-dependent and-independent fashions and via different routes[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(2): e01439-18
    Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24
    Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis[J]. Nature Communications, 2017, 8(1): 481
    Jiang M, Wang Z X, Xia F F, et al. Reductions in bacterial viability stimulate the production of extra-intestinal pathogenic Escherichia coli (ExPEC) cytoplasm-carrying extracellular vesicles (EVs)[J]. PLoS Pathogens, 2022, 18(10): e1010908
    Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24
    Bitto N J, Chapman R, Pidot S, et al. Bacterial membrane vesicles transport their DNA cargo into host cells[J]. Scientific Reports, 2017, 7(1): 7072
    Abe K, Toyofuku M, Nomura N, et al. Autolysis-mediated membrane vesicle formation in Bacillus subtilis[J]. Environmental Microbiology, 2021, 23(5): 2632-2647
    Vermassen A, Talon R, Andant C, et al. Cell-wall hydrolases as antimicrobials against Staphylococcus species: Focus on Sle1[J]. Microorganisms, 2019, 7(11): 559
    Yang Y Z, Ma T, Wang Z F, et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana[J]. Nature Communications, 2018, 9(1): 5449
    Bonnington K E, Kuehn M J. Outer membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in Salmonella during environmental transitions[J]. mBio, 2016, 7(5): e01532-16
    Toyofuku M, Zhou S M, Sawada I, et al. Membrane vesicle formation is associated with pyocin production under denitrifying conditions in Pseudomonas aeruginosa PAO1[J]. Environmental Microbiology, 2014, 16(9): 2927-2938
    Choi C W, Park E C, Yun S H, et al. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440[J]. Journal of Proteome Research, 2014, 13(10): 4298-4309
    Prados-Rosales R, Weinrick B C, Piqué D G, et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition[J]. Journal of Bacteriology, 2014, 196(6): 1250-1256
    Keenan J I, Davis K A, Beaugie C R, et al. Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions[J]. Innate Immunity, 2008, 14(5): 279-290
    Baumgarten T, Sperling S, Seifert J, et al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Applied and Environmental Microbiology, 2012, 78(17): 6217-6224
    Shetty A, Hickey W J. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4[J]. PLoS One, 2014, 9(3): e92143
    Kim S W, Seo J S, Park S B, et al. Significant increase in the secretion of extracellular vesicles and antibiotics resistance from methicillin-resistant Staphylococcus aureus induced by ampicillin stress[J]. Scientific Reports, 2020, 10(1): 21066
    Bos J, Cisneros L H, Mazel D. Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure[J]. Science Advances, 2021, 7(4): eabd1033
    Mashburn L M, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote[J]. Nature, 2005, 437(7057): 422-425
    Kesty N C, Mason K M, Reedy M, et al. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells[J]. EMBO Journal, 2004, 23(23): 4538-4549
    Tran F, Boedicker J Q. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles[J]. Journal of Bacteriology, 2019, 201(7): e00430-18
    Brown L, Wolf J M, Prados-Rosales R, et al. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi[J]. Nature Reviews Microbiology, 2015, 13(10): 620-630
    Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology, 2007, 9(6): 654-659
    Wang M, Nie Y, Wu X L. Membrane vesicles from a Dietzia bacterium containing multiple cargoes and their roles in iron delivery[J]. Environmental Microbiology, 2021, 23(2): 1009-1019
    Bitto N J, Cheng L, Johnston E L, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy[J]. Journal of Extracellular Vesicles, 2021, 10(6): e12080
    Lu J, Zhang Y X, Wu J, et al. Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China[J]. Environmental Pollution, 2019, 252(Pt A): 450-460
    Dinh N T H, Lee J, Lee J, et al. Indoor dust extracellular vesicles promote cancer lung metastasis by inducing tumour necrosis factor-α[J]. Journal of Extracellular Vesicles, 2020, 9(1): 1766821
    Liu J F, Cvirkaite-Krupovic V, Commere P H, et al. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments[J]. The ISME Journal, 2021, 15(10): 2892-2905
    Qiu T L, Huo L H, Guo Y J, et al. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost[J]. Environmental Microbiome, 2022, 17(1): 42
    Zhang Y, Zhou J, Wu J, et al. Distribution and transfer of antibiotic resistance genes in different soil-plant systems[J]. Environmental Science and Pollution Research International, 2022, 29(39): 59159-59172
    Schooling S R, Beveridge T J. Membrane vesicles: An overlooked component of the matrices of biofilms[J]. Journal of Bacteriology, 2006, 188(16): 5945-5957
    Kim Y S, Choi E J, Lee W H, et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses[J]. Clinical and Experimental Allergy, 2013, 43(4): 443-454
    Qin Y F, Guo Z H, Huang H N, et al. Widespread of potential pathogen-derived extracellular vesicles carrying antibiotic resistance genes in indoor dust[J]. Environmental Science & Technology, 2022, 56(9): 5653-5663
    Biller S J, Coe A, Arellano A A, et al. Environmental and taxonomic drivers of bacterial extracellular vesicle production in marine ecosystems[J]. Applied and Environmental Microbiology, 2023, 89(6): e0059423
    Biller S J, Schubotz F, Roggensack S E, et al. Bacterial vesicles in marine ecosystems[J]. Science, 2014, 343(6167): 183-186
    Northrop-Albrecht E J, Taylor W R, Huang B Q, et al. Assessment of extracellular vesicle isolation methods from human stool supernatant[J]. Journal of Extracellular Vesicles, 2022, 11(4): e12208
    Park K S, Lee J, Lee C J, et al. Sepsis-like systemic inflammation induced by nano-sized extracellular vesicles from feces[J]. Frontiers in Microbiology, 2018, 9: 1735
    王文洁, 于丽明, 邵梦莹, 等. 畜禽养殖环境中抗生素抗性基因污染的研究进展[J]. 应用生态学报, 2023, 34(5): 1415-1429

    Wang W J, Yu L M, Shao M Y, et al. Research review on the pollution of antibiotic resistance genes in livestock and poultry farming environments[J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1415-1429(in Chinese)

    Zhu L T, Huang H N, Avellán-Llaguno R D, et al. Diverse functional genes harboured in extracellular vesicles from environmental and human microbiota[J]. Journal of Extracellular Vesicles, 2022, 11(12): e12292
    Hu T, Wolfram J, Srivastava S. Extracellular vesicles in cancer detection: Hopes and hypes[J]. Trends in Cancer, 2021, 7(2): 122-133
    Kaparakis-Liaskos M, Ferrero R L. Immune modulation by bacterial outer membrane vesicles[J]. Nature Reviews Immunology, 2015, 15(6): 375-387
    Kyeong M J. Effects of polymyxin B direct hemoperfusion by measurement of outer membrane vesicles in patients with septic shock[J]. Open Forum Infectious Diseases, 2023, 10(Supplement_2): 350-500
    Han P P, Bartold P M, Salomon C, et al. Salivary outer membrane vesicles and DNA methylation of small extracellular vesicles as biomarkers for periodontal status: A pilot study[J]. International Journal of Molecular Sciences, 2021, 22(5): 2423
    程谦, 吴疆, 王岱. 细菌外膜囊泡与抗生素相关的研究进展[J]. 中国抗生素杂志, 2019, 44(10): 1119-1124

    Cheng Q, Wu J, Wang D. Advances in the relationship of bacterial outer-membrane vesicles and antibiotics[J]. Chinese Journal of Antibiotics, 2019, 44(10): 1119-1124(in Chinese)

    Dorward D W, Garon C F, Judd R C. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae[J]. Journal of Bacteriology, 1989, 171(5): 2499-2505
    Kulkarni H M, Nagaraj R, Jagannadham M V. Protective role of E. coli outer membrane vesicles against antibiotics[J]. Microbiological Research, 2015, 181: 1-7
    Fulsundar S, Harms K, Flaten G E, et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation[J]. Applied and Environmental Microbiology, 2014, 80(11): 3469-3483
    Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: A new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(7): 3084-3090
    Wang Z, Wen Z, Jiang M, et al. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae[J]. Transboundary and Emerging Diseases, 2022, 69(5): e2661-e2676
    Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond[J]. FEMS Microbiology Reviews, 2019, 43(3): 273-303
    Cai J, Han Y, Ren H M, et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells[J]. Journal of Molecular Cell Biology, 2013, 5(4): 227-238
    Chatterjee S, Datta S, Roy S, et al. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: Focus on NDM-1 and its linkage to ISAba125[J]. Frontiers in Microbiology, 2016, 7: 1126
    Bonnington K E, Kuehn M J. Protein selection and export via outer membrane vesicles[J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1612-1619
    Kolling G L, Matthews K R. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157: H7[J]. Applied and Environmental Microbiology, 1999, 65(5): 1843-1848
    Yaron S, Kolling G L, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157: H7 to other enteric bacteria[J]. Applied and Environmental Microbiology, 2000, 66(10): 4414-4420
    Chiura H X, Kogure K, Hagemann S, et al. Evidence for particle-induced horizontal gene transfer and serial transduction between bacteria[J]. FEMS Microbiology Ecology, 2011, 76(3): 576-591
    Blesa A, Berenguer J. Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp[J]. International Microbiology, 2015, 18(3): 177-187
    Klieve A V, Yokoyama M T, Forster R J, et al. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin[J]. Applied and Environmental Microbiology, 2005, 71(8): 4248-4253
    Gaudin M, Gauliard E, Schouten S, et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA[J]. Environmental Microbiology Reports, 2013, 5(1): 109-116
    Uddin M J, Dawan J, Jeon G, et al. The role of bacterial membrane vesicles in the dissemination of antibiotic resistance and as promising carriers for therapeutic agent delivery[J]. Microorganisms, 2020, 8(5): 670
    Renelli M, Matias V, Lo R Y, et al. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential[D]. Ontario, CA: University of Guelph, 2004: 67
    Tran F, Boedicker J Q. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer[J]. Scientific Reports, 2017, 7(1): 8813
    Tran F, Boedicker J Q. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles[J]. Journal of Bacteriology, 2019, 201(7): e00430-18
    Xu H T, Tan C, Li C, et al. ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of blaCTX-M-55[J]. International Journal of Antimicrobial Agents, 2024, 63(5): 107145
    Zhao M Y, He S, Wen R Q, et al. Membrane vesicles derived from Enterococcus faecalis promote the co-transfer of important antibiotic resistance genes located on both plasmids and chromosomes[J]. Journal of Antimicrobial Chemotherapy, 2024, 79(2): 320-326
    Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance: The environmental framework[J]. Nature Reviews Microbiology, 2015, 13: 310-317
    Schaar V, Nordström T, Mörgelin M, et al. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3845-3853
    Stentz R, Horn N, Cross K, et al. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics[J]. Journal of Antimicrobial Chemotherapy, 2015, 70(3): 701-709
  • 加载中
计量
  • 文章访问数:  938
  • HTML全文浏览数:  938
  • PDF下载数:  115
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-26
王绍宇, 李香会, 胥娇娇, 温馨, 吴银宝. 细菌外囊泡介导抗生素抗性基因水平转移的研究进展[J]. 生态毒理学报, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001
引用本文: 王绍宇, 李香会, 胥娇娇, 温馨, 吴银宝. 细菌外囊泡介导抗生素抗性基因水平转移的研究进展[J]. 生态毒理学报, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001
Wang Shaoyu, Li Xianghui, Xu Jiaojiao, Wen Xin, Wu Yinbao. Advance on Bacterial Extracellular Vesicles Mediating Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001
Citation: Wang Shaoyu, Li Xianghui, Xu Jiaojiao, Wen Xin, Wu Yinbao. Advance on Bacterial Extracellular Vesicles Mediating Horizontal Transfer of Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(5): 97-111. doi: 10.7524/AJE.1673-5897.20240326001

细菌外囊泡介导抗生素抗性基因水平转移的研究进展

    通讯作者: 吴银宝,E-mail:wuyinbao@scau.edu.cn
    作者简介: 王绍宇(2003-),男,本科生,研究方向为抗生素抗性基因,E-mail:790216639@qq.com
  • 1. 华南农业大学动物科学学院, 岭南现代农业科学与技术广东省实验室, 广州 510642;
  • 2. 猪禽种业全国重点实验室, 广州 510642;
  • 3. 广东省农业动物基因组学与分子育种重点实验室, 广州 510642
基金项目:

广东省基础与应用基础研究基金资助项目(2023A1515110839);广东省重点领域研发计划课题(2023B0202060001);国家资助博士后研究人员计划(GZC20240507)

摘要: 胞外囊泡是参与细胞间的物质传递和信息交流的重要媒介。近年来,细菌通过分泌外囊泡装载新型环境污染物抗生素抗性基因(antibiotic resistance genes, ARGs)在细菌间发生基因水平转移已被确认为ARGs水平转移的一种新途径。本文介绍了细菌外囊泡的概念、来源和功能,明确了细菌外囊泡在细胞通信和生物过程调控中的重要作用,说明细菌外囊泡介导ARGs水平转移的机制,明确细菌外囊泡在抗生素抗性基因传播中的关键作用。重点探讨了细菌外囊泡介导ARGs传播的影响因素及对生态环境的危害。本文以囊泡融合传播ARGs的新途径为切入点,综述了细菌外囊泡介导的ARGs在环境中发生水平转移的特征与机制,进一步完善了ARGs在环境中的分布和传播特征,对更深入地开发针对抗生素耐药性的阻控和削减技术具有重要意义。

English Abstract

参考文献 (100)

返回顶部

目录

/

返回文章
返回