细菌外囊泡介导抗生素抗性基因水平转移的研究进展
Advance on Bacterial Extracellular Vesicles Mediating Horizontal Transfer of Antibiotic Resistance Genes
-
摘要: 胞外囊泡是参与细胞间的物质传递和信息交流的重要媒介。近年来,细菌通过分泌外囊泡装载新型环境污染物抗生素抗性基因(antibiotic resistance genes, ARGs)在细菌间发生基因水平转移已被确认为ARGs水平转移的一种新途径。本文介绍了细菌外囊泡的概念、来源和功能,明确了细菌外囊泡在细胞通信和生物过程调控中的重要作用,说明细菌外囊泡介导ARGs水平转移的机制,明确细菌外囊泡在抗生素抗性基因传播中的关键作用。重点探讨了细菌外囊泡介导ARGs传播的影响因素及对生态环境的危害。本文以囊泡融合传播ARGs的新途径为切入点,综述了细菌外囊泡介导的ARGs在环境中发生水平转移的特征与机制,进一步完善了ARGs在环境中的分布和传播特征,对更深入地开发针对抗生素耐药性的阻控和削减技术具有重要意义。Abstract: Extracellular vesicles are important mediators involved in material transfer and information exchange between cells. In recent years, horizontal gene transfer of antibiotic resistance genes (ARGs), as emerging environmental pollutants, occurs when bacteria load ARGs by secreting extracellular vesicles, which has been identified as a novel pathway for horizontal transfer of ARGs. Here, the aim of the paper is to introduce the concept, source and function of bacterial extracellular vesicles, to clarify the important role of bacterial extracellular vesicles in cellular communication and biological processes regulation, to illustrate how bacterial extracellular vesicles mediate the horizontal transfer of ARGs, and to identify the key role of bacterial extracellular vesicles in the transmission of ARGs. The paper highlights the influencing factors and the ecological hazards of ARGs transmission via bacterial extracellular vesicles. In this paper, taking the new pathway of ARGs transmission by vesicle fusion as an entry point, we review the characteristics and mechanisms of horizontal transfer of ARGs mediated by bacterial extracellular vesicles in the environment, and further refine the distribution and transmission of ARGs in the environment. The paper is of great significance for the further development of the prevention and reduction technologies against ARGs.
-
-
Alberro A, Iparraguirre L, Fernandes A, et al. Extracellular vesicles in blood: Sources, effects, and applications[J]. International Journal of Molecular Sciences, 2021, 22(15): 8163 Deatherage B L, Cookson B T. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life[J]. Infection and Immunity, 2012, 80(6): 1948-1957 Cui Y, Gao J Y, He Y L, et al. Plant extracellular vesicles[J]. Protoplasma, 2020, 257(1): 3-12 Wang J, Ding Y, Wang J Q, et al. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells[J]. The Plant Cell, 2010, 22(12): 4009-4030 Domingues S, Nielsen K M. Membrane vesicles and horizontal gene transfer in prokaryotes[J]. Current Opinion in Microbiology, 2017, 38: 16-21 van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228 Orench-Rivera N, Kuehn M J. Environmentally controlled bacterial vesicle-mediated export[J]. Cellular Microbiology, 2016, 18(11): 1525-1536 O’Brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications[J]. Nature Reviews Molecular Cell Biology, 2020, 21(10): 585-606 Kim S I, Ha J Y, Choi S Y, et al. Use of bacterial extracellular vesicles for gene delivery to host cells[J]. Biomolecules, 2022, 12(9): 1171 Cheng Y, Schorey J S. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing[J]. EMBO Reports, 2019, 20(3): e46613 Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery[J]. Environmental Microbiology, 2013, 15(2): 347-354 Levy D, Do M A, Brown A, et al. Genetic labeling of extracellular vesicles for studying biogenesis and uptake in living mammalian cells[J]. Methods in Enzymology, 2020, 645: 1-14 Tan Z L, Li J F, Luo H M, et al. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy[J]. Frontiers in Pharmacology, 2022, 13: 1006299 Janda M, Robatzek S. Extracellular vesicles from phytobacteria: Properties, functions and uses[J]. Biotechnology Advances, 2022, 58: 107934 黄海宁, 黄乾生. 细菌胞外囊泡的研究进展[J]. 微生物学报, 2022, 62(5): 1613-1628 Huang H N, Huang Q S. Research progress on extracellular vesicles of bacteria[J]. Acta Microbiologica Sinica, 2022, 62(5): 1613-1628(in Chinese)
Chang X L, Fang L Q, Bai J, et al. Characteristics and changes of DNA in extracellular vesicles[J]. DNA and Cell Biology, 2020, 39(9): 1486-1493 Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, et al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: Apoptotic bodies, microvesicles, and exosomes[J]. The Prostate, 2014, 74(14): 1379-1390 Tan Z L, Li J F, Luo H M, et al. Plant extracellular vesicles: A novel bioactive nanoparticle for tumor therapy[J]. Frontiers in Pharmacology, 2022, 13: 1006299 Fan S J, Chen J Y, Tang C H, et al. Edible plant extracellular vesicles: An emerging tool for bioactives delivery[J]. Frontiers in Immunology, 2022, 13: 1028418 Boccia E, Alfieri M, Belvedere R, et al. Plant hairy roots for the production of extracellular vesicles with antitumor bioactivity[J]. Communications Biology, 2022, 5(1): 848 Choi J W, Kim S C, Hong S H, et al. Secretable small RNAs via outer membrane vesicles in periodontal pathogens[J]. Journal of Dental Research, 2017, 96(4): 458-466 Yáñez-Mó M, Siljander P R M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. Journal of Extracellular Vesicles, 2015, 4: 27066 周舒扬, 张丕奇, 戴肖东, 等. 细菌外膜囊泡(OMV)研究进展[J]. 微生物学杂志, 2021, 41(6): 83-89 Zhou S Y, Zhang P Q, Dai X D, et al. Advances in bacterial outer membrane vesicles (OMV)[J]. Journal of Microbiology, 2021, 41(6): 83-89(in Chinese)
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24 Hernández-Cervantes R, Méndez-Díaz M, Prospéro-García Ó, et al. Immunoregulatory role of cannabinoids during infectious disease[J]. Neuroimmunomodulation, 2017, 24(4/5): 183-199 Lee J, Kim S H, Choi D S, et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis[J]. Proteomics, 2015, 15(19): 3331-3337 Kahn M E, Barany F, Smith H O. Transformasomes: Specialized membranous structures that protect DNA during Haemophilus transformation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(22): 6927-6931 Berleman J, Auer M. The role of bacterial outer membrane vesicles for intra- and interspecies delivery[J]. Environmental Microbiology, 2013, 15(2): 347-354 Chen J W, Zhang H F, Wang S Q, et al. Inhibitors of bacterial extracellular vesicles[J]. Frontiers in Microbiology, 2022, 13: 835058 Ahmed A A Q, McKay T J M. Environmental and ecological importance of bacterial extracellular vesicles (BEVs)[J]. Science of the Total Environment, 2024, 907: 168098 Toyofuku M, Schild S, Kaparakis-Liaskos M, et al. Composition and functions of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2023, 21(7): 415-430 Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24 Andreoni F, Toyofuku M, Menzi C, et al. Antibiotics stimulate formation of vesicles in Staphylococcus aureus in both phage-dependent and-independent fashions and via different routes[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(2): e01439-18 Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24 Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis[J]. Nature Communications, 2017, 8(1): 481 Jiang M, Wang Z X, Xia F F, et al. Reductions in bacterial viability stimulate the production of extra-intestinal pathogenic Escherichia coli (ExPEC) cytoplasm-carrying extracellular vesicles (EVs)[J]. PLoS Pathogens, 2022, 18(10): e1010908 Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24 Bitto N J, Chapman R, Pidot S, et al. Bacterial membrane vesicles transport their DNA cargo into host cells[J]. Scientific Reports, 2017, 7(1): 7072 Abe K, Toyofuku M, Nomura N, et al. Autolysis-mediated membrane vesicle formation in Bacillus subtilis[J]. Environmental Microbiology, 2021, 23(5): 2632-2647 Vermassen A, Talon R, Andant C, et al. Cell-wall hydrolases as antimicrobials against Staphylococcus species: Focus on Sle1[J]. Microorganisms, 2019, 7(11): 559 Yang Y Z, Ma T, Wang Z F, et al. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana[J]. Nature Communications, 2018, 9(1): 5449 Bonnington K E, Kuehn M J. Outer membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in Salmonella during environmental transitions[J]. mBio, 2016, 7(5): e01532-16 Toyofuku M, Zhou S M, Sawada I, et al. Membrane vesicle formation is associated with pyocin production under denitrifying conditions in Pseudomonas aeruginosa PAO1[J]. Environmental Microbiology, 2014, 16(9): 2927-2938 Choi C W, Park E C, Yun S H, et al. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440[J]. Journal of Proteome Research, 2014, 13(10): 4298-4309 Prados-Rosales R, Weinrick B C, Piqué D G, et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition[J]. Journal of Bacteriology, 2014, 196(6): 1250-1256 Keenan J I, Davis K A, Beaugie C R, et al. Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions[J]. Innate Immunity, 2008, 14(5): 279-290 Baumgarten T, Sperling S, Seifert J, et al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Applied and Environmental Microbiology, 2012, 78(17): 6217-6224 Shetty A, Hickey W J. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4[J]. PLoS One, 2014, 9(3): e92143 Kim S W, Seo J S, Park S B, et al. Significant increase in the secretion of extracellular vesicles and antibiotics resistance from methicillin-resistant Staphylococcus aureus induced by ampicillin stress[J]. Scientific Reports, 2020, 10(1): 21066 Bos J, Cisneros L H, Mazel D. Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure[J]. Science Advances, 2021, 7(4): eabd1033 Mashburn L M, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote[J]. Nature, 2005, 437(7057): 422-425 Kesty N C, Mason K M, Reedy M, et al. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells[J]. EMBO Journal, 2004, 23(23): 4538-4549 Tran F, Boedicker J Q. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles[J]. Journal of Bacteriology, 2019, 201(7): e00430-18 Brown L, Wolf J M, Prados-Rosales R, et al. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi[J]. Nature Reviews Microbiology, 2015, 13(10): 620-630 Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nature Cell Biology, 2007, 9(6): 654-659 Wang M, Nie Y, Wu X L. Membrane vesicles from a Dietzia bacterium containing multiple cargoes and their roles in iron delivery[J]. Environmental Microbiology, 2021, 23(2): 1009-1019 Bitto N J, Cheng L, Johnston E L, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy[J]. Journal of Extracellular Vesicles, 2021, 10(6): e12080 Lu J, Zhang Y X, Wu J, et al. Occurrence and spatial distribution of antibiotic resistance genes in the Bohai Sea and Yellow Sea areas, China[J]. Environmental Pollution, 2019, 252(Pt A): 450-460 Dinh N T H, Lee J, Lee J, et al. Indoor dust extracellular vesicles promote cancer lung metastasis by inducing tumour necrosis factor-α[J]. Journal of Extracellular Vesicles, 2020, 9(1): 1766821 Liu J F, Cvirkaite-Krupovic V, Commere P H, et al. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments[J]. The ISME Journal, 2021, 15(10): 2892-2905 Qiu T L, Huo L H, Guo Y J, et al. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost[J]. Environmental Microbiome, 2022, 17(1): 42 Zhang Y, Zhou J, Wu J, et al. Distribution and transfer of antibiotic resistance genes in different soil-plant systems[J]. Environmental Science and Pollution Research International, 2022, 29(39): 59159-59172 Schooling S R, Beveridge T J. Membrane vesicles: An overlooked component of the matrices of biofilms[J]. Journal of Bacteriology, 2006, 188(16): 5945-5957 Kim Y S, Choi E J, Lee W H, et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses[J]. Clinical and Experimental Allergy, 2013, 43(4): 443-454 Qin Y F, Guo Z H, Huang H N, et al. Widespread of potential pathogen-derived extracellular vesicles carrying antibiotic resistance genes in indoor dust[J]. Environmental Science & Technology, 2022, 56(9): 5653-5663 Biller S J, Coe A, Arellano A A, et al. Environmental and taxonomic drivers of bacterial extracellular vesicle production in marine ecosystems[J]. Applied and Environmental Microbiology, 2023, 89(6): e0059423 Biller S J, Schubotz F, Roggensack S E, et al. Bacterial vesicles in marine ecosystems[J]. Science, 2014, 343(6167): 183-186 Northrop-Albrecht E J, Taylor W R, Huang B Q, et al. Assessment of extracellular vesicle isolation methods from human stool supernatant[J]. Journal of Extracellular Vesicles, 2022, 11(4): e12208 Park K S, Lee J, Lee C J, et al. Sepsis-like systemic inflammation induced by nano-sized extracellular vesicles from feces[J]. Frontiers in Microbiology, 2018, 9: 1735 王文洁, 于丽明, 邵梦莹, 等. 畜禽养殖环境中抗生素抗性基因污染的研究进展[J]. 应用生态学报, 2023, 34(5): 1415-1429 Wang W J, Yu L M, Shao M Y, et al. Research review on the pollution of antibiotic resistance genes in livestock and poultry farming environments[J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1415-1429(in Chinese)
Zhu L T, Huang H N, Avellán-Llaguno R D, et al. Diverse functional genes harboured in extracellular vesicles from environmental and human microbiota[J]. Journal of Extracellular Vesicles, 2022, 11(12): e12292 Hu T, Wolfram J, Srivastava S. Extracellular vesicles in cancer detection: Hopes and hypes[J]. Trends in Cancer, 2021, 7(2): 122-133 Kaparakis-Liaskos M, Ferrero R L. Immune modulation by bacterial outer membrane vesicles[J]. Nature Reviews Immunology, 2015, 15(6): 375-387 Kyeong M J. Effects of polymyxin B direct hemoperfusion by measurement of outer membrane vesicles in patients with septic shock[J]. Open Forum Infectious Diseases, 2023, 10(Supplement_2): 350-500 Han P P, Bartold P M, Salomon C, et al. Salivary outer membrane vesicles and DNA methylation of small extracellular vesicles as biomarkers for periodontal status: A pilot study[J]. International Journal of Molecular Sciences, 2021, 22(5): 2423 程谦, 吴疆, 王岱. 细菌外膜囊泡与抗生素相关的研究进展[J]. 中国抗生素杂志, 2019, 44(10): 1119-1124 Cheng Q, Wu J, Wang D. Advances in the relationship of bacterial outer-membrane vesicles and antibiotics[J]. Chinese Journal of Antibiotics, 2019, 44(10): 1119-1124(in Chinese)
Dorward D W, Garon C F, Judd R C. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae[J]. Journal of Bacteriology, 1989, 171(5): 2499-2505 Kulkarni H M, Nagaraj R, Jagannadham M V. Protective role of E. coli outer membrane vesicles against antibiotics[J]. Microbiological Research, 2015, 181: 1-7 Fulsundar S, Harms K, Flaten G E, et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation[J]. Applied and Environmental Microbiology, 2014, 80(11): 3469-3483 Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: A new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(7): 3084-3090 Wang Z, Wen Z, Jiang M, et al. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae[J]. Transboundary and Emerging Diseases, 2022, 69(5): e2661-e2676 Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond[J]. FEMS Microbiology Reviews, 2019, 43(3): 273-303 Cai J, Han Y, Ren H M, et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells[J]. Journal of Molecular Cell Biology, 2013, 5(4): 227-238 Chatterjee S, Datta S, Roy S, et al. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: Focus on NDM-1 and its linkage to ISAba125[J]. Frontiers in Microbiology, 2016, 7: 1126 Bonnington K E, Kuehn M J. Protein selection and export via outer membrane vesicles[J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1612-1619 Kolling G L, Matthews K R. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157: H7[J]. Applied and Environmental Microbiology, 1999, 65(5): 1843-1848 Yaron S, Kolling G L, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157: H7 to other enteric bacteria[J]. Applied and Environmental Microbiology, 2000, 66(10): 4414-4420 Chiura H X, Kogure K, Hagemann S, et al. Evidence for particle-induced horizontal gene transfer and serial transduction between bacteria[J]. FEMS Microbiology Ecology, 2011, 76(3): 576-591 Blesa A, Berenguer J. Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp[J]. International Microbiology, 2015, 18(3): 177-187 Klieve A V, Yokoyama M T, Forster R J, et al. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin[J]. Applied and Environmental Microbiology, 2005, 71(8): 4248-4253 Gaudin M, Gauliard E, Schouten S, et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA[J]. Environmental Microbiology Reports, 2013, 5(1): 109-116 Uddin M J, Dawan J, Jeon G, et al. The role of bacterial membrane vesicles in the dissemination of antibiotic resistance and as promising carriers for therapeutic agent delivery[J]. Microorganisms, 2020, 8(5): 670 Renelli M, Matias V, Lo R Y, et al. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential[D]. Ontario, CA: University of Guelph, 2004: 67 Tran F, Boedicker J Q. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer[J]. Scientific Reports, 2017, 7(1): 8813 Tran F, Boedicker J Q. Plasmid characteristics modulate the propensity of gene exchange in bacterial vesicles[J]. Journal of Bacteriology, 2019, 201(7): e00430-18 Xu H T, Tan C, Li C, et al. ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of blaCTX-M-55[J]. International Journal of Antimicrobial Agents, 2024, 63(5): 107145 Zhao M Y, He S, Wen R Q, et al. Membrane vesicles derived from Enterococcus faecalis promote the co-transfer of important antibiotic resistance genes located on both plasmids and chromosomes[J]. Journal of Antimicrobial Chemotherapy, 2024, 79(2): 320-326 Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance: The environmental framework[J]. Nature Reviews Microbiology, 2015, 13: 310-317 Schaar V, Nordström T, Mörgelin M, et al. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(8): 3845-3853 Stentz R, Horn N, Cross K, et al. Cephalosporinases associated with outer membrane vesicles released by Bacteroides spp. protect gut pathogens and commensals against β-lactam antibiotics[J]. Journal of Antimicrobial Chemotherapy, 2015, 70(3): 701-709 -

计量
- 文章访问数: 938
- HTML全文浏览数: 938
- PDF下载数: 115
- 施引文献: 0