甲壳素复合石墨相氮化碳的制备及光催化杀菌性能

余致汐, 贺南南, 陈欢, 江芳. 甲壳素复合石墨相氮化碳的制备及光催化杀菌性能[J]. 环境化学, 2020, (5): 1271-1278. doi: 10.7524/j.issn.0254-6108.2019081206
引用本文: 余致汐, 贺南南, 陈欢, 江芳. 甲壳素复合石墨相氮化碳的制备及光催化杀菌性能[J]. 环境化学, 2020, (5): 1271-1278. doi: 10.7524/j.issn.0254-6108.2019081206
YU Zhixi, HE Nannan, CHEN Huan, JIANG Fang. Preparation of chitin composite graphite phase carbonitride and its photocatalytic sterilization performance[J]. Environmental Chemistry, 2020, (5): 1271-1278. doi: 10.7524/j.issn.0254-6108.2019081206
Citation: YU Zhixi, HE Nannan, CHEN Huan, JIANG Fang. Preparation of chitin composite graphite phase carbonitride and its photocatalytic sterilization performance[J]. Environmental Chemistry, 2020, (5): 1271-1278. doi: 10.7524/j.issn.0254-6108.2019081206

甲壳素复合石墨相氮化碳的制备及光催化杀菌性能

    通讯作者: 江芳, E-mail: fjiang@njust.edu.cn
  • 基金项目:

    国家自然科学基金(51778295,51678306)资助.

Preparation of chitin composite graphite phase carbonitride and its photocatalytic sterilization performance

    Corresponding author: JIANG Fang, fjiang@njust.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (51778295,51678306).
  • 摘要: 本文采用水热法制备了甲壳素(Chitin)和石墨相氮化碳(g-C3N4)复合材料Chitin-CN,并采用XRD、SEM、XPS、光电流及阻抗分析等手段对其进行物化特性分析.与g-C3N4相比,Chitin-CN复合材料的光生电子-空穴对的分离效率较高,甲壳素(Chitin)含量为0.2 g的Chitin-CN材料在模拟太阳光照射下对大肠杆菌K-12表现出最佳的光催化杀菌效率,在2 h内可完全杀死6.5 lg cfu·mL-1的大肠杆菌K-12.Chitin-CN的破碎结构暴露了更多的活性位点,甲壳素的加入提高了光生载流子的分离率,从而促进了复合材料光催化杀菌的性能.捕获实验表明超氧自由基(·O2-)和空穴(h+)是Chitin-CN作用于大肠杆菌K-12的主要活性物种.
  • 加载中
  • [1] ZHANG C, LI Y, ZHANG W, et al. Metal-free virucidal effects induced by g-C3N4 under visible light irradiation:Statistical analysis and parameter optimization[J]. Chemosphere, 2018, 195:551-558.
    [2] GENISOGLU M, ERGI-KAYIMAZ C, SOFUOGLU S C. Multi-route-Multi-pathway exposure to trihalomethanes and associated cumulative health risks with response and dose addition[J]. Journal of Environmental Management, 2019, 233:823-831.
    [3] LI T, ZHAO L, HE Y, et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B:Environmental, 2013, 129:255-263.
    [4] LI J, SHEN B, HONG Z, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98):12017-12019.
    [5] LI Y, ZHANG C, SHUAI D, et al. Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4:Virucidal performance and mechanism[J]. Water Research, 2016, 106:249-258.
    [6] HUANG J, HO W, WANG X. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination[J]. Chemical Communications, 2014, 50(33):4338-4340.
    [7] ZHAO H, YU H, QUAN X, et al. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J]. Applied Catalysis B:Environmental, 2014, 152:46-50.
    [8] XU J, WANG Z, ZHU Y. Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(33):27727-27735.
    [9] KANG S, ZHANG L, HE M, et al. " Alternated cooling and heating" strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation[J]. Carbon, 2018, 137:19-30.
    [10] KANG S, HUANG W, ZHANG L, et al. Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection[J]. ACS Applied Materials & Interfaces, 2018, 10(16):13796-13804.
    [11] OUYANG K, DAI K, CHEN H, et al. Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation[J]. Ecotoxicology and Environmental Safety, 2017, 136:40-45.
    [12] MUNOZ-BATICTA M J, FONTELLES-CARCELLER O, FERRER M, et al. Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination[J]. Applied Catalysis B:Environmental, 2016, 183:86-95.
    [13] MA S, ZHAN S, JIA Y, et al. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light[J]. Applied Catalysis B:Environmental, 2016, 186:77-87.
    [14] WANG W, AN T, LI G, et al. Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation[J]. Applied Catalysis B:Environmental, 2017, 217:570-580.
    [15] LIU B, HAN X, WANG Y, et al. Synthesis of g-C3N4/BiOI/BiOBr heterostructures for efficient visible-light-induced photocatalytic and antibacterial activity[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(16):14300-14310.
    [16] ADHIKARI S P, AWASTHI G P, LEE J, et al. Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C3N4 sheets customized with metal nanoparticles-decorated TiO2 nanofibers[J]. RSC Advances, 2016, 6(60):55079-55091.
    [17] SUN L, DU T, HU C, et al. Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10):8693-8701.
    [18] WANG R, KONG X, ZHANG W, et al. Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures[J]. Applied Catalysis B:Environmental, 2018, 225:228-237.
    [19] CRINI G. Historical review on chitin and chitosan biopolymers[J]. Environmental Chemistry Letters, 2019, 18:1623-1643.
    [20] KHATTAK S, WAHID F, LIU L P, et al. Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials:current state and perspectives[J]. Applied Microbiology and Biotechnology, 2019, 103(5):1989-2006.
    [21] WANG Y, PEI Y, XIONG W, et al. New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight[J]. International journal of Biological Macromolecules, 2015, 81:477-482.
    [22] JBELI A, HAMDEN Z, BOUATTOUR S, et al. Chitosan-Ag-TiO2 films:An effective photocatalyst under visible light[J]. Carbohydrate Polymers, 2018, 199:31-40.
    [23] MANSUR A A P, MANSUR H S, RAMANERY F P, et al. "Green" colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes:study of the photodegradation of organic dye pollutants[J]. Applied Catalysis B:Environmental, 2014, 158:269-279.
    [24] KHOZA P, NYOKONG T. Photocatalytic behaviour of zinc tetraamino phthalocyanine-silver nanoparticles immobilized on chitosan beads[J]. Journal of Molecular Catalysis A:Chemical, 2015, 399:25-32.
    [25] LI Y, ZHANG X, YANG M, et al. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity[J]. Chemosphere, 2017, 168:1302-1308.
    [26] WU H, LI H, ZHAO X, et al. Highly doped and exposed Cu(Ⅰ)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries[J]. Energy & Environmental Science, 2016, 9(12):3736-3745.
    [27] HO W, ZHANG Z, LIN W, et al. Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4[J]. ACS Applied Materials & Interfaces, 2015, 7(9):5497-5505.
    [28] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22):4763-4770.
    [29] DASSANAYAKE R S, GUNATHILAKE C, ABIDI N, et al. Activated carbon derived from chitin aerogels:Preparation and CO2 adsorption[J]. Cellulose, 2018, 25(3):1911-1920.
    [30] RU G, WU S, YAN X, et al. Inverse solubility of chitin/chitosan in aqueous alkali solvents at low temperature[J]. Carbohydrate Polymers, 2019, 206:487-492.
    [31] CAO C B, LV Q, ZHU H S. Carbon nitride prepared by solvothermal method[J]. Diamond and Related Materials, 2003, 12(3-7):1070-1074.
    [32] FU Y, ZHU J, HU C, et al. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode[J]. Nanoscale, 2014, 6(21):12555-12564.
    [33] LV Q, CAO C, LI C, et al. Formation of crystalline carbon nitride powder by a mild solvothermal method[J]. Journal of Materials Chemistry, 2003, 13(6):1241-1243.
    [34] PRAMANIK K, SARKAR P, BHATTACHARYAY D. Semi-quantitative colorimetric and supersensitive electrochemical sensors for mercury using rhodamine b hydrazide thio derivative[J]. Journal of Molecular Liquids, 2019, 276:141-152.
    [35] HE N, CAO S, ZHANG L, et al. Enhanced photocatalytic disinfection of Escherichia coli K-12 by porous g-C3N4 nanosheets:Combined effect of photo-generated and intracellular ROSs[J]. Chemosphere, 2019, 235:1116-1124.
    [36] LI Y, ZHANG J, WANG Q, et al. Nitrogen-rich carbon nitride hollow vessels:Synthesis, characterization, and their properties[J]. The Journal of Physical Chemistry B, 2010, 114(29):9429-9434.
    [37] GUO Q, XIE Y, WANG X, et al. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures[J]. Chemical Communications, 2004(1):26-27.
    [38] OH J, YOO R J, KIM S Y, et al. Oxidized Carbon nitrides:Water-dispersible, atomically thin carbon nitride-based nanodots and their performances as bioimaging probes[J]. Chemistry-A European Journal, 2015, 21(16):6241-6246.
    [39] DONG G, YANG L, WANG F, et al. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides[J]. ACS Catalysis, 2016, 6(10):6511-6519.
    [40] LIU J, ZHANG T, WANG Z, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21(38):14398-14401.
    [41] CHENG F, YAN J, ZHOU C, et al. An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent photocatalytic performance[J]. Journal of Colloid and Interface Science, 2016, 468:103-109.
    [42] QIU P, YAO J, CHEN H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials, 2016, 317:158-168.
  • 加载中
计量
  • 文章访问数:  2148
  • HTML全文浏览数:  2148
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-12

甲壳素复合石墨相氮化碳的制备及光催化杀菌性能

    通讯作者: 江芳, E-mail: fjiang@njust.edu.cn
  • 南京理工大学环境与生物工程学院, 南京, 210094
基金项目:

国家自然科学基金(51778295,51678306)资助.

摘要: 本文采用水热法制备了甲壳素(Chitin)和石墨相氮化碳(g-C3N4)复合材料Chitin-CN,并采用XRD、SEM、XPS、光电流及阻抗分析等手段对其进行物化特性分析.与g-C3N4相比,Chitin-CN复合材料的光生电子-空穴对的分离效率较高,甲壳素(Chitin)含量为0.2 g的Chitin-CN材料在模拟太阳光照射下对大肠杆菌K-12表现出最佳的光催化杀菌效率,在2 h内可完全杀死6.5 lg cfu·mL-1的大肠杆菌K-12.Chitin-CN的破碎结构暴露了更多的活性位点,甲壳素的加入提高了光生载流子的分离率,从而促进了复合材料光催化杀菌的性能.捕获实验表明超氧自由基(·O2-)和空穴(h+)是Chitin-CN作用于大肠杆菌K-12的主要活性物种.

English Abstract

参考文献 (42)

目录

/

返回文章
返回