典型产业承接区土壤砷含量的空间分布特征及影响因素

温鹏翀, 温汉辉, 蔡立梅, 罗杰, 蒋慧豪. 典型产业承接区土壤砷含量的空间分布特征及影响因素[J]. 环境化学, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805
引用本文: 温鹏翀, 温汉辉, 蔡立梅, 罗杰, 蒋慧豪. 典型产业承接区土壤砷含量的空间分布特征及影响因素[J]. 环境化学, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805
WEN Pengchong, WEN Hanhui, CAI Limei, LUO Jie, JIANG Huihao. Spatial distribution characteristics and influencing factors of soil arsenic content in typical industrial undertaking areas[J]. Environmental Chemistry, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805
Citation: WEN Pengchong, WEN Hanhui, CAI Limei, LUO Jie, JIANG Huihao. Spatial distribution characteristics and influencing factors of soil arsenic content in typical industrial undertaking areas[J]. Environmental Chemistry, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805

典型产业承接区土壤砷含量的空间分布特征及影响因素

    通讯作者: 蔡立梅, E-mail: clmktz88@yangtzeu.edu.cn
  • 基金项目:

    国家自然科学基金(41203061)资助.

Spatial distribution characteristics and influencing factors of soil arsenic content in typical industrial undertaking areas

    Corresponding author: CAI Limei, clmktz88@yangtzeu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41203061).
  • 摘要: 本文以揭阳市为研究区域,采集了1330个表层土壤(0—20 cm)样品和331个深层土壤(150—200 cm)样品,利用富集因子法分析了表层土壤中As的污染状况,通过GIS空间分析技术以及单因素分析法探究了土壤As的空间分布特征以及影响因素.结果表明,研究区表层土壤As含量的均值为6.03 mg·kg-1,低于该区土壤背景值(7.16 mg·kg-1)及农用地土壤污染风险管控值(20 mg·kg-1),大部分土壤为轻微污染和中度污染.揭阳市表层土壤As含量高值区分布于揭阳市东北部、中部和西南部地区,低值区分布于西北部和东南部地区.土壤类型、成土母质和土地利用类型是影响表层土壤As含量的重要因素,在不同土壤类型中,黄壤和赤红壤As含量相对较高;不同成土母质中,粉砂岩母质土壤As含量显著高于其他母质;在不同土地利用类型中,农用地土壤As含量最高.
  • 加载中
  • [1] 王朋朋, 孔晨晨, 聂超甲, 等. 北京市平原区土壤类金属砷质量分数分布特征研究[J].西南师范大学学报(自然科学版), 2018, 43(5):131-139. WANG P P, KONG C C, NIE C J, et al. Distribution characteristics of soil metal arsenic mass fractions in the plain area of Beijing[J]. Journal of Southwest Normal University (Natural Science Edition), 2018, 43(5):131-139(in Chinese).
    [2] 许效天, 霍林, 左叶颖, 等. 铝改性粉煤灰漂珠吸附水溶液中砷的性能研究[J].中国环境科学, 2011, 31(8):1300-1305.

    XU X T, HUO L, ZUO Y Y, et al. Study on the performance of aluminum modified fly ash floating beads to adsorb arsenic in aqueous solution[J]. Chinese Environmental Science, 2011, 31(8):1300-1305(in Chinese).

    [3] 罗磊, 张淑贞, 马义兵. 土壤中砷吸附机理及其影响因素研究进展[J].土壤, 2008, 40(3):351-359.

    LUO L, ZHANG S Z, MA Y B. Research progress of arsenic adsorption mechanism and influencing factors in soil[J]. Soil, 2008, 40(3):351-359(in Chinese).

    [4] 董飞, 卢瑛, 王兴祥,等. 华南地区不同品系水稻积累砷特征及其影响因素[J].农业环境科学学报, 2011, 30(2):214-219.

    DONG F, LU Y, WANG X X, et al. Characteristics and influencing factors of arsenic accumulation in rice of different strains in South China[J]. Journal of Agricultural and Environmental Sciences, 2011, 30(2):214-219(in Chinese).

    [5] 宋波, 刘畅, 陈同斌. 广西土壤和沉积物砷含量及污染分布特征[J].自然资源学报, 2017, 32(4):654-668.

    SONG B, LIU C, CHEN T B. Guangxi soil and sediment arsenic content and pollution distribution characteristics[J]. Journal of Natural Resources, 2017, 32(4):654-668(in Chinese).

    [6] GHOOCHANI M, DEHGHANI M H, MEHRABI F, et al. Determining additional risk of carcinogenicity and non-carcinogenicity of heavy metals (lead and arsenic) in raw and as-consumed samples of imported rice in Tehran, Iran[J].Environmental Science and Pollution Research International, 2019, 26(23):24190-24197.
    [7] SODHI K K, KUMAR M, AGRAWAL P K, et al. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies[J].Environmental Technology & Innovation, 2019, 16(16):2352-1864.
    [8] 廖晓勇, 陈同斌, 肖细元, 等. 污染水稻田中土壤含砷量的空间变异特征[J].地理研究, 2003, 22(5):635-643.

    LIAO X Y, CHEN T B, XIAO X Y, et al. Spatial variability of arsenic content in contaminated rice fields[J]. Geographical Research, 2003, 22(5):635-643(in Chinese).

    [9] LOEWENBERG S. In Bangladesh, arsenic poisoning is a neglected issue[J].The Lancet, 2016, 388(10058):2336-2337.
    [10] 陈保卫, LE X C. 中国关于砷的研究进展[J].环境化学, 2011, 30(11):1936-1943.

    CHEN B W, LE X C. Research progress on arsenic in China[J]. Environmental Chemistry, 2011, 30(11):1936-1943(in Chinese).

    [11] 肖细元, 陈同斌, 廖晓勇, 等. 中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究, 2008, 27(1):201-212.

    XIAO X Y, CHEN T B, LIAO X Y, et al. Regional distribution and arsenic pollution of the main arsenic-bearing mineral resources in China[J]. Geographical Research, 2008, 27(1):201-212(in Chinese).

    [12] 翁焕新, 张霄宇, 邹乐君, 等. 中国土壤中砷的自然存在状况及其成因分析[J].浙江大学学报(工学版), 2000, 34(1):90-94. WENG H X, ZHANG X Y, ZOU L J, et al. Natural presence of arsenic in Chinese soil and its cause analysis[J]. Journal of Zhejiang University (Engineering Science Edition), 2000, 34(1):90-94(in Chinese).
    [13] 余雪莲, 李启权, 彭月月, 等. 成都平原核心区土壤砷空间变异特征及影响因素[J].环境科学研究, 2020,33(4):1005-1012.

    YU X L, LI Q Q, PENG Y Y, et al. Spatial variability and influencing factors of soil arsenic in the core area of Chengdu Plain[J]. Environmental Science Research, 2020,33(4):1005-1012. (in Chinese).

    [14] 江东鹏, 张宝春. 粤东揭阳市环境污染控制对策研究[J].环境科学与管理, 2010, 35(10):43-45.

    JIANG D P, ZHANG B C. Research on countermeasures for environmental pollution control in Jieyang City, East Guangdong[J]. Environmental Science and Management, 2010, 35(10):43-45(in Chinese).

    [15] 罗杰. 广东省韩江三角洲土壤污染物源辨析及其环境承载力[D].武汉:中国地质大学(武汉), 2016:1-166. LUO J. Source analysis and environmental carrying capacity of soil pollutants in the Hanjiang Delta, Guangdong Province[D]. Wuhan:China University of Geosciences (Wuhan), 2016:1-166(in Chinese).
    [16] 彭囿凯, 黄东亚, 闫金婷. 氢化物发生-原子荧光光谱法测定土壤中总砷[J].黑龙江农业科学,2017,282(12):73-75.

    PENG Y K, HUANG D Y, YAN J T. Determination of total arsenic in soil by hydride generation-atomic fluorescence spectrometry[J].Heilongjiang Agricultural Sciences, 2017,282(12):73-75(in Chinese).

    [17] 梁多, 王一凡, 黄敏, 等. 氢化物发生原子荧光光谱法测定广东主要流域周边土壤中的砷、汞、铅[J].广东化工,2015,42(24):156-157.

    LIANG D, WANG Y F, HUANG M, et al. Determination of arsenic, mercury and lead in the soil around the main watershed of Guangdong by hydride generation atomic fluorescence spectrometry[J]. Guangdong Chemical Industry, 2015,42(24):156-157(in Chinese).

    [18] 田瑜. 粉末压片制样X射线荧光光谱法测定土壤中的几种重金属[J].安阳工学院学报,2018,17(6):24-27.

    TIAN Y. X-ray fluorescence spectrometry of powder tablet preparation for determination of several heavy metals in soil[J].Journal of Anyang Institute of Technology, 2018,17(6):24-27(in Chinese).

    [19] JIANG Y X, CHAO S H, LIU J W, et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China[J].Chemosphere, 2017, 168:1658-1668.
    [20] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J].Environmental Geology, 2000, 39(6):611-627.
    [21] ZHANG S W, SHEN C Y, CHEN X Y, et al. Spatial interpolation of soil texture using compositional Kriging and regression Kriging with consideration of the characteristics of compositional data and environment variables[J].Journal of Integrative Agriculture, 2013, 12(9):1673-1683.
    [22] 姜晓璐, 邹滨, 汤景文, 等. 广东省东南部菜地水田砷含量空间分布[J].农业工程学报, 2016, 32(23):263-268

    ,316. JIANG X L, ZOU B, TANG J W, et al. Spatial distribution of arsenic content in vegetable fields and paddy fields in southeast Guangdong[J]. Journal of Agricultural Engineering, 2016, 32(23):263-268, 316(in Chinese).

    [23] 吕建树, 何华春. 江苏海岸带土壤重金属来源解析及空间分布[J].环境科学, 2018, 39(6):2853-2864.

    LV J S, HE H C. Source analysis and spatial distribution of heavy metals in Jiangsu coastal soil[J]. Environmental Science, 2018, 39(6):2853-2864(in Chinese).

    [24] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析[J].环境科学, 2018, 39(9):4317-4326.

    SONG B, ZHANG Y X, PANG R, et al. Characteristics and source analysis of heavy metal content in farmland soil of Xijiang River Basin in Guangxi[J]. Environmental Science, 2018, 39(9):4317-4326(in Chinese).

    [25] LV J S, LIU Y, ZHANG Z L, et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach[J].Journal of Soils and Sediments, 2015, 15(1):163-178.
    [26] 范晓婷, 蒋艳雪, 崔斌, 等. 富集因子法中参比元素的选取方法——以元江底泥中重金属污染评价为例[J].环境科学学报, 2016, 36(10):3795-3803.

    FAN X T, JIANG Y X, CUI B, et al. Selection method of reference elements in enrichment factor method——Taking heavy metal pollution evaluation in Yuanjiang sediment as an example[J]. Journal of Environmental Science, 2016, 36(10):3795-3803(in Chinese).

    [27] 王娟恒, 温汉辉, 蔡立梅,等.广东揭阳土壤镉含量的空间分布特征及影响因素[J].现代地质,2020,34(1):88-96.

    WANG J H, WEN H H, CAI L M, et al. Spatial distribution characteristics and influencing factors of soil cadmium content in Jieyang, Guangdong[J].Modern Geology, 2020,34(1):88-96(in Chinese).

    [28] 纪雷, 杜恒清, 孙健, 等. 纺织品可溶出重金属的风险评估分析[J].纺织学报, 2006, 27(2):29-32

    ,40. JI L, DU H Q, SUN J, et al. Risk assessment and analysis of soluble metal in textiles[J]. Journal of Textiles,2006, 27(2):29-32,40(in Chinese).

    [29] 蔡立梅, 马瑾, 周永章, 等. 东莞市农业土壤重金属的空间分布特征及来源解析[J].环境科学, 2008, 29(12):3496-3502.

    CAI L M, MA J, ZHOU Y Z, et al. Spatial distribution characteristics and source analysis of heavy metals in agricultural soils of Dongguan City[J]. Environmental Science, 2008, 29(12):3496-3502(in Chinese).

    [30] 徐小逊, 张世熔, 李丹阳, 等. 川中典型丘陵区土壤砷和汞空间变异特征及影响因素分析[J].农业环境科学学报, 2010, 29(7):1320-1325.

    XU X X, ZHANG S R, LI D Y, et al. Analysis of spatial variability and influencing factors of soil arsenic and mercury in typical hilly areas in central Sichuan[J].Journal of Agricultural and Environmental Sciences, 2010, 29(7):1320-1325(in Chinese).

    [31] 徐夕博, 吕建树, 徐汝汝. 山东省沂源县土壤重金属来源分布及风险评价[J].农业工程学报, 2018, 34(9):216-223.

    XU X B, LV J S, XU R R, et al. Distribution and risk assessment of soil heavy metals in Yiyuan County, Shandong Province[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9):216-223(in Chinese).

    [32] LI C M, LEI C X, LIANG Y T, et al. As contamination alters rhizosphere microbial community composition with soil type dependency during the rice growing season[J].Paddy & Water Environment, 2017, 15(3):581-592.
    [33] KUMARATHILAKA P, SENEWEERA S, MEHARG A, et al. Arsenic speciation dynamics in paddy rice soil-water environment:Sources, physico-chemical, and biological factors-A review[J].Water Research, 2018, 140:403-414.
    [34] 戎秋涛, 徐开勋, 张一强. 浙江省主要类型土壤中元素的环境背景值[J].浙江大学学报(自然科学版), 1992, 26(2):46-52. RONG Q T, XU K X, ZHANG Y Q, et al. Environmental background values of elements in the main types of soil in Zhejiang Province[J]. Journal of Zhejiang University (Natural Science Edition), 1992, 26(2):46-52(in Chinese).
  • 加载中
计量
  • 文章访问数:  3189
  • HTML全文浏览数:  3189
  • PDF下载数:  98
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-08
温鹏翀, 温汉辉, 蔡立梅, 罗杰, 蒋慧豪. 典型产业承接区土壤砷含量的空间分布特征及影响因素[J]. 环境化学, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805
引用本文: 温鹏翀, 温汉辉, 蔡立梅, 罗杰, 蒋慧豪. 典型产业承接区土壤砷含量的空间分布特征及影响因素[J]. 环境化学, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805
WEN Pengchong, WEN Hanhui, CAI Limei, LUO Jie, JIANG Huihao. Spatial distribution characteristics and influencing factors of soil arsenic content in typical industrial undertaking areas[J]. Environmental Chemistry, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805
Citation: WEN Pengchong, WEN Hanhui, CAI Limei, LUO Jie, JIANG Huihao. Spatial distribution characteristics and influencing factors of soil arsenic content in typical industrial undertaking areas[J]. Environmental Chemistry, 2021, (1): 204-212. doi: 10.7524/j.issn.0254-6108.2020050805

典型产业承接区土壤砷含量的空间分布特征及影响因素

    通讯作者: 蔡立梅, E-mail: clmktz88@yangtzeu.edu.cn
  • 1. 长江大学油气资源与勘探技术教育部重点实验室, 武汉, 430100;
  • 2. 长江大学资源与环境学院, 武汉, 430100;
  • 3. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州, 510640;
  • 4. 广东省有色金属地质局940队, 清远, 511500
基金项目:

国家自然科学基金(41203061)资助.

摘要: 本文以揭阳市为研究区域,采集了1330个表层土壤(0—20 cm)样品和331个深层土壤(150—200 cm)样品,利用富集因子法分析了表层土壤中As的污染状况,通过GIS空间分析技术以及单因素分析法探究了土壤As的空间分布特征以及影响因素.结果表明,研究区表层土壤As含量的均值为6.03 mg·kg-1,低于该区土壤背景值(7.16 mg·kg-1)及农用地土壤污染风险管控值(20 mg·kg-1),大部分土壤为轻微污染和中度污染.揭阳市表层土壤As含量高值区分布于揭阳市东北部、中部和西南部地区,低值区分布于西北部和东南部地区.土壤类型、成土母质和土地利用类型是影响表层土壤As含量的重要因素,在不同土壤类型中,黄壤和赤红壤As含量相对较高;不同成土母质中,粉砂岩母质土壤As含量显著高于其他母质;在不同土地利用类型中,农用地土壤As含量最高.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回