邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能

张令君, 肖谷清, 孟秋冬. 邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能[J]. 环境化学, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308
引用本文: 张令君, 肖谷清, 孟秋冬. 邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能[J]. 环境化学, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308
ZHANG Lingjun, XIAO Guqing, MENG Qiudong. Adsorption to salicylic acid on o-aminopyrimidine supported resin with double pore structure[J]. Environmental Chemistry, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308
Citation: ZHANG Lingjun, XIAO Guqing, MENG Qiudong. Adsorption to salicylic acid on o-aminopyrimidine supported resin with double pore structure[J]. Environmental Chemistry, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308

邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能

    通讯作者: 肖谷清, E-mail: xiaoguqing2005@163.com
  • 基金项目:

    国家自然科学基金(51678225)和湖南省教育厅科研项目(19C0351)资助.

Adsorption to salicylic acid on o-aminopyrimidine supported resin with double pore structure

    Corresponding author: XIAO Guqing, xiaoguqing2005@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (51678225) and Scientific Research Project of Hunan Education Department (19C0351).
  • 摘要: 氯甲基聚苯乙烯中50%的-CH2Cl转化为-CH2-交联桥,50%的-CH2Cl与邻氨基嘧啶反应,制备邻氨基嘧啶负载的含超高交联树脂孔结构和大孔树脂孔结构的双重孔结构树脂(命名为CY-01树脂),对比研究CY-01树脂和H-103树脂对水杨酸的吸附性能和吸附机理.实验表明两种树脂对水杨酸的吸附量顺序为CY-01>H-103.CY-01树脂在pH值2.76时对水杨酸的吸附量最大,H-103树脂对水杨酸的吸附量与水杨酸的分子比随pH值的变化相一致.两种树脂对水杨酸的吸附速率顺序为CY-01>H-103.由于CY-01树脂的双重孔结构特征,CY-01树脂比H-103树脂吸附水杨酸表现出了更大的吸附量和吸附速率.H-103树脂吸附水杨酸以疏水作用为吸附机理,CY-01树脂吸附水杨酸存在疏水作用和阴离子交换多重吸附机理.
  • 加载中
  • [1] FLORENZA X, GARCIA-SEGURA S, CENTELLAS F, et al. Comparative electrochemical degradation of salicylic and aminosalicylic acids:Influence of functional groups on decay kinetics and mineralization[J]. Chemosphere, 2016, 154:171-178.
    [2] XIAO G Q, WEN R M, WEI D M. Effects of the hydrophobicity of adsorbate on the adsorption of salicylic acid and 5-sulfosalicylic acid onto the hydrophobic-hydrophilic macroporous polydivinylbenzene/polymethylacrylethylenediamine IPN[J]. Fluid Phase Equilibria, 2016, 421:33-38.
    [3] LING X, LI H B, ZHA H W, et al. Polar-modified post-cross-linked polystyrene and its adsorption towards salicylic acid from aqueous solution[J]. Chemical Engineering Journal, 2016, 286:400-407.
    [4] HUANG J H, LI Y. Hydrophobic-hydrophilic interpenetrating polymer networks (IPNs) composed of hydrophobic polystyrene (PST) and hydrophilic polyacryldiethylenetriamine (PADETA) networks and their high efficient adsorption to salicylic acid[J]. Fluid Phase Equilibria, 2016, 427:384-389.
    [5] 冯家豪, 刘海津, 汪应灵, 等. 次氯酸钠氧化降解水杨酸[J]. 环境工程学报, 2016,10(2):531-536.

    FENG J H, LIU H J, WANG Y L, et al. Oxidation of salicylic acid by sodium hypochlorite[J]. Journal of Environmental Engineering, 2016,10(2):531-536(in Chinese).

    [6] YANG M, XU A H, DU H Z, et al. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process[J]. Journal of Hazardous Materials, 2007, 139:86-92.
    [7] CHOU W L, WANG C T, HUANG K Y, et al. Electrochemical removal of salicylic acid from aqueous solutions using aluminum electrodes[J]. Desalination, 2011, 271:55-61.
    [8] MOHITE S V, RAJPURE K Y. Oxidative degradation of salicylic acid by sprayed WO3 photocatalyst[J]. Materials Science and Engineering B, 2015, 200:78-83.
    [9] 谢祖芳, 陈渊, 晏全, 等. 水杨酸和磺基水杨酸在D201树脂上的共吸附行为[J]. 化学工程, 2011,39(6):44-49.

    XIE Z F, CHEN Y, YAN Q, et al. Coadsorption behavior of salicylic acid and sulfosalicylic acid on D201 resin[J]. Chemical Engineering, 2011,39(6):44-49(in Chinese).

    [10] 李玉红, 宋超, 赵孔双, 等. 壳聚糖膜对水杨酸吸附及释放过程的实时介电谱法研究[J]. 化学学报, 2004,62(16):1495-1502.

    LI Y H, SONG C, ZHAO K S, et al. Salicylic Acid Adsorption and release on chitosan membrane real-time dielectric spectroscopy study[J]. Acta Chimica Sinica, 2004,62(16):1495-1502(in Chinese).

    [11] 徐超, 刘金鑫, 孙伟之, 等. 新型超高交联吸附树脂的制备及其对水杨酸、没食子酸吸附性能[J]. 环境化学, 2018,37(4):807-816.

    XU C, LIU J X, SUN W Z, et al. Synthesis of novel hypercrosslinked resin and their absorption towards salicylic acid and gallic acid[J]. Environmental Chemistry, 2018, 37(4):807-816(in Chinese).

    [12] KUANG W, LIU Y N, HYANG J H. Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline[J]. Journal of Colloid and Interface Science, 2017, 487:31-37.
    [13] WANG X M, ZHANG T, HUO J Q, et al. Tunable porosity and polarity of polar post-cross-linked resins and selective adsorption[J]. Journal of Colloid and Interface Science, 2017, 487:231-238.
    [14] 张全兴, 李爱民, 潘丙才. 离子交换与吸附树脂的发展及在工业废水处理与资源化中的应用[J]. 高分子通报, 2015, (9):21-43. ZHANG Q X,LI A M,PAN B C. The development of ion exchange resin and adsorption resin and its application in industrial wastewater treatment and resources[J]. Polymer Bulletin, 2015

    , (9):21-43(in Chinese).

    [15] ZHANG M C, LI A M, ZHOU Q, et al. Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins[J]. Microporous and Mesoporous Materials, 2014, 184:105-111.
    [16] JIANG X F, HUANG J H. Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins:Equilibrium and kinetics[J]. Journal of Colloid and Interface Science, 2016, 467:230-238.
    [17] LONG C, LI A M, WU H S, et al. Adsorption of naphthalene on macroporous and hypercrosslinked polymeric adsorbent:Effect of pore structure of adsorbents on thermodynamic and kinetic properties[J]. Colloids and Surfaces A, 2009, 333:150-155.
    [18] XIAO G Q, WEN R M, LIU A J, et al. Adsorption performance of salicylic acid on a novel resin with distinctive double pore structure[J]. Journal of Hazardous Materials, 2017, 329:77-83.
    [19] XIAO G Q, WEN R M, WEI D M, et al. A novel hyper-cross-linked polymeric adsorbent with high microporous surface area and its adsorption to theophylline from aqueous solution[J]. Microporous and Mesoporous Materials, 2016, 228:168-173.
    [20] MA Y, ZHOU Q, LI A M, et al. Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracyclin[J]. Journal of Hazardous Materials, 2014, 266:84-93.
    [21] DEAN J A. Lange's Handbook of Chemistry[M]. 15th ed., New York:McGraw-Hill Book Co., 1999.
    [22] GARCIA-DELGADO R A, COTORUELO-MINGUEZ L M, RODRIGUEZ J J. Equilibrium study of single -solute adsorption of anionic suractaants with polymeric XAD resins[J]. Separation Science and Technology, 1992, 27:975-987.
    [23] 张增强, 张一平. 几个吸附等温模型热力学参数的计算方法[J]. 西北农业大学学报. 1998,26(2):94-97.

    ZHANG Z Q, ZHANG Y P. Method of calculating the thermodynamic parametres from some isothermal absorption models[J]. Acta University Agriculture Boreali-Orcidentalis, 1998,26(2):94-97(in Chinese).

    [24] XIAO G Q, WEN R M. Comparative adsorption of glyphosate from aqueous solution by 2-aminopyridine modified polystyrene resin, D301 resin and 330 resin:Influencing factors, salinity resistance and mechanism[J]. Fluid Phase Equilibria, 2016, 411:1-6.
    [25] HU Y Q, GUO T, YE X S. Dye adsorption by resins:Effect of ionic strength on hydrophobic and electrostatic interactions[J]. Chemical Engineering Journal, 2013, 228:392-397.
  • 加载中
计量
  • 文章访问数:  2880
  • HTML全文浏览数:  2880
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-03
张令君, 肖谷清, 孟秋冬. 邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能[J]. 环境化学, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308
引用本文: 张令君, 肖谷清, 孟秋冬. 邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能[J]. 环境化学, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308
ZHANG Lingjun, XIAO Guqing, MENG Qiudong. Adsorption to salicylic acid on o-aminopyrimidine supported resin with double pore structure[J]. Environmental Chemistry, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308
Citation: ZHANG Lingjun, XIAO Guqing, MENG Qiudong. Adsorption to salicylic acid on o-aminopyrimidine supported resin with double pore structure[J]. Environmental Chemistry, 2020, (8): 2166-2174. doi: 10.7524/j.issn.0254-6108.2019060308

邻氨基嘧啶负载的双重孔结构树脂对水杨酸的吸附性能

基金项目:

国家自然科学基金(51678225)和湖南省教育厅科研项目(19C0351)资助.

摘要: 氯甲基聚苯乙烯中50%的-CH2Cl转化为-CH2-交联桥,50%的-CH2Cl与邻氨基嘧啶反应,制备邻氨基嘧啶负载的含超高交联树脂孔结构和大孔树脂孔结构的双重孔结构树脂(命名为CY-01树脂),对比研究CY-01树脂和H-103树脂对水杨酸的吸附性能和吸附机理.实验表明两种树脂对水杨酸的吸附量顺序为CY-01>H-103.CY-01树脂在pH值2.76时对水杨酸的吸附量最大,H-103树脂对水杨酸的吸附量与水杨酸的分子比随pH值的变化相一致.两种树脂对水杨酸的吸附速率顺序为CY-01>H-103.由于CY-01树脂的双重孔结构特征,CY-01树脂比H-103树脂吸附水杨酸表现出了更大的吸附量和吸附速率.H-103树脂吸附水杨酸以疏水作用为吸附机理,CY-01树脂吸附水杨酸存在疏水作用和阴离子交换多重吸附机理.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回