农药对熊蜂的生态毒理研究进展
Progress in Pesticide Toxicology Research on Bumblebees
-
摘要: 熊蜂(Bombus spp.)因其独特形态特征及生物学特性成为农业生产中重要传粉昆虫,在维持自然及农业生态系统平衡发挥重要作用。近年来,熊蜂多样性呈减少趋势,农药不合理施用为重要因素之一。本文基于农药对熊蜂的毒理学研究现状,系统整理了熊蜂急性致死和慢性亚致死毒理研究方法,围绕农药对熊蜂的急性毒性,亚致死剂量农药对熊蜂精子活性及体温调节等生理发育,颜色分辨及学习记忆行为、肠道微生物结构及解毒因子等方面影响展开综述,对研究中存在的问题和未来研究方向进行了思考和展望,旨在为农药的科学使用、生物环境安全评估及熊蜂多样性保护提供参考。Abstract: Bumblebees (Bombus spp.) as significant agricultural pollinators for the morphological and biological characteristics, play an important role in maintaining the balance of natural and agricultural ecosystems. The inappropriate use of pesticides is one of the major factors causing the decrease of bumblebee diversity in recent years. This paper investigated the research methods of acute lethality and chronic sublethal toxicology of bumblebees, focusing primarily on the acute toxicity of pesticides to bumblebees, the effects of sublethal doses of pesticides on physiological development such as sperm activity and body temperature regulation, color discrimination, learning and memory behavior, and gut microbial structure, and detoxification factors, and so on. Then, the existing problems and future research were raised. The aim of paper is to provide reference for scientific application of pesticides, environmental and biological safety assessment, and conservation of bumblebee diversity.
-
Key words:
- pesticide /
- bumblebees /
- acute lethal toxicology /
- chronic sublethal effects /
- gut microbiota /
- cytochrome P450
-
-
van der Sluijs J P, Vaage N S. Pollinators and global food security:The need for holistic global stewardship[J]. Food Ethics, 2016, 1(1):75-91 欧阳芳, 王丽娜, 闫卓, 等. 中国农业生态系统昆虫授粉功能量与服务价值评估[J]. 生态学报, 2019, 39(1):131-145 Ouyang F, Wang L N, Yan Z, et al. Evaluation of insect pollination and service value in China's agricultural ecosystems[J]. Acta Ecologica Sinica, 2019, 39(1):131-145(in Chinese)
秦加敏, 苏睿, 梁铖, 等. 熊蜂生物学及种群影响因素研究进展[J]. 环境昆虫学报, 2020, 42(6):1383-1393 Qin J M, Su R, Liang C, et al. Research progress of biology and population influencing factors in bumblebee[J]. Journal of Environmental Entomology, 2020, 42(6):1383-1393(in Chinese)
Lemanski N J, Williams N M, Winfree R. Greater bee diversity is needed to maintain crop pollination over time[J]. Nature Ecology & Evolution, 2022, 6(10):1516-1523 黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5):486-497 Huang J X, An J D. Species diversity, pollination application and strategy for conservation of the bumblebees of China[J]. Biodiversity Science, 2018, 26(5):486-497(in Chinese)
钟培星, 谢再成, 吴延旭, 等. 熊蜂对油茶授粉结实的影响初探[J]. 中国蜂业, 2019, 70(7):69-72 Zhong P X, Xie Z C, Wu Y X, et al. Study on the effects of pollination by Bombus terrestris on Camellia oleifera[J]. Apiculture of China, 2019, 70(7):69-72(in Chinese)
安建东, 童越敏, 国占宝, 等. 熊蜂为温室茄子授粉试验[J]. 中国养蜂, 2004, 55(3):7-8 An J D, Tong Y M, Guo Z B, et al. A study on Bombus terrestris pollination to greenhouse eggplant[J]. Apiculture of China, 2004, 55(3):7-8(in Chinese)
国占宝, 安建东, 彭文君, 等. 熊蜂和蜜蜂为日光温室甜椒授粉的研究[J]. 中国养蜂, 2005, 56(10):8-9 Guo Z B, An J D, Peng W J, et al. Research which the bumblebee and honeybee pollinate for the sweet pepper of sunlight greenhouse[J]. Apiculture of China, 2005, 56(10):8-9(in Chinese)
程尚, 周容, 罗文华, 等. 熊蜂为温室番茄授粉的效果研究[J]. 四川畜牧兽医, 2011, 38(2):23-24 Cheng S, Zhou R, Luo W H, et al. Effect of Bombus terrestris pollination on greenhouse tomato[J]. Sichuan Animal & Veterinary Sciences, 2011, 38(2):23-24(in Chinese)
吴光安, 尹园园, 陈浩, 等. 地熊蜂和意大利蜜蜂为设施蓝莓授粉效果比较研究[J]. 中国蜂业, 2019, 70(9):68-70 Wu G A, Yin Y Y, Chen H, et al. Comparative study on pollination by Bombus terrestris and Apis mellifera for blueberry in greenhouse[J]. Apiculture of China, 2019, 70(9):68-70(in Chinese)
孙永深, 安建东, 童越敏, 等. 熊蜂(Bombus terrestris)为温室黄瓜授粉的效果研究[J]. 蜜蜂杂志, 2003, 23(8):3-5 Sun Y S, An J D, Tong Y M, et al. A study on the effect of Bombus terrestris pollination to greenhouse cucumber[J]. Journal of Bee, 2003, 23(8):3-5(in Chinese)
Brown M J F. The trouble with bumblebees[J]. Nature, 2011, 469(7329):169-170 Knop E, Zoller L, Ryser R, et al. Artificial light at night as a new threat to pollination[J]. Nature, 2017, 548(7666):206-209 Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being[J]. Nature, 2016, 540(7632):220-229 Pimentel D. Amounts of pesticides reaching target pests:Environmental impacts and ethics[J]. Journal of Agricultural and Environmental Ethics, 1995, 8(1):17-29 Yatoo A M, Ali M N, Zaheen Z, et al. Assessment of pesticide toxicity on earthworms using multiple biomarkers:A review[J]. Environmental Chemistry Letters, 2022, 20(4):2573-2596 Feltham H, Park K, Goulson D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency[J]. Ecotoxicology, 2014, 23(3):317-323 Stanley D A, Garratt M P, Wickens J B, et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees[J]. Nature, 2015, 528(7583):548-550 Stanley D A, Russell A L, Morrison S J, et al. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth[J]. The Journal of Applied Ecology, 2016, 53(5):1440-1449 Phelps J D, Strang C G, Sherry D F. Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens)[J]. Ecotoxicology, 2020, 29(3):359-374 Organisation for Economic Co-operation and Development (OECD). Honeybees, acute oral toxicity test[R]. Paris:OECD, 1998 Besard L, Mommaerts V, Vandeven J, et al. Compatibility of traditional and novel acaricides with bumblebees (Bombus terrestris):A first laboratory assessment of toxicity and sublethal effects[J]. Pest Management Science, 2010, 66(7):786-793 Thompson H M, Hunt L V. Extrapolating from honeybees to bumblebees in pesticide risk assessment[J]. Ecotoxicology, 1999, 8(3):147-166 Organisation for Economic Co-operation and Development (OECD). Bumblebee, acute oral toxicity test[R]. Paris:OECD, 2017 Auteri D, Arce A, Ingels B, et al. Analysis of the evidence to support the definition of Specific Protection Goals for bumble bees and solitary bees[J]. EFSA Supporting Publications, 2022, 19(1):1-43 常菊花, 何月平. 应用Polo软件进行农药毒力数据的比较分析[J]. 浙江农业学报, 2014, 26(6):1552-1557 Chang J H, He Y P. The analysis for comparing the pesticide toxicity data using the Polo software[J]. Acta Agriculturae Zhejiangensis, 2014, 26(6):1552-1557(in Chinese)
European and Mediterranean Plant Protection Organization (EPPO). EPPO Bulletin:Chapter 10:Honeybees[M]. John Wiley & Sons, Ltd, 2010:323-331 European Food Safety Authority (EFSA). Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees)[J]. EFSA Journal, 2013, 11(7):3295 宋怀磊, 周婷, 王强, 等. 杀虫剂对蜜蜂的亚致死效应[J]. 中国蜂业, 2010, 61(6):8-10 Song H L, Zhou T, Wang Q, et al. Research advance in sublethal effects of pesticides on honeybee[J]. Apiculture of China, 2010, 61(6):8-10(in Chinese)
European Food Safety Authority (EFSA). Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees)[J]. EFSA Journal, 2012, 10(5):2668 Demirozer O, Uzun A, Gosterit A. Lethal and sublethal effects of different biopesticides on Bombus terrestris (Hymenoptera:Apidae)[J]. Apidologie, 2022, 53(2):1-13 Balfour N J, Al Toufailia H, Scandian L, et al. Landscape scale study of the net effect of proximity to a neonicotinoid-treated crop on bee colony health[J]. Environmental Science & Technology, 2017, 51(18):10825-10833 Barbosa W F, de Meyer L, Guedes R N, et al. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera:Apidae)[J]. Ecotoxicology, 2015, 24(1):130-142 尹令虹. 亚致死浓度噻虫啉对西方蜜蜂工蜂学习记忆的影响[D]. 北京:中国农业科学院, 2021:7-8 Yin L H. Effects of sublethal concentration of thiacloprid on learning and memory of Apis mellifera worker bees[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021:7 -8(in Chinese)
Gradish A E, Scott-Dupree C D, Shipp L, et al. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera:Apidae)[J]. Pest Management Science, 2010, 66(2):142-146 Morandin L A, Winston M L, Franklin M T, et al. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson)[J]. Pest Management Science, 2005, 61(7):619-626 Klinger E G, Camp A A, Strange J P, et al. Bombus (Hymenoptera:Apidae) microcolonies as a tool for biological understanding and pesticide risk assessment[J]. Environmental Entomology, 2019, 48(6):1249-1259 Siviter H, Brown M J F, Leadbeater E. Sulfoxaflor exposure reduces bumblebee reproductive success[J]. Nature, 2018, 561(7721):109-112 Minnameyer A, Strobl V, Bruckner S, et al. Eusocial insect declines:Insecticide impairs sperm and feeding glands in bumblebees[J]. The Science of the Total Environment, 2021, 785:146955 Rothman J A, Russell K A, Leger L, et al. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes[J]. Proceedings Biological Sciences, 2020, 287(1937):20200980 Motta E V S, Moran N A. The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities[J]. The Science of the Total Environment, 2023, 872:162102 Tang Q H, Li W L, Wang J P, et al. Effects of spinetoram and glyphosate on physiological biomarkers and gut microbes in Bombus terrestris[J]. Frontiers in Physiology, 2022, 13:1054742 Syromyatnikov M Y, Gureev A P, Starkova N N, et al. Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus terrestris L.)[J]. Pesticide Biochemistry and Physiology, 2020, 169:104675 Weidenmüller A, Meltzer A, Neupert S, et al. Glyphosate impairs collective thermoregulation in bumblebees[J]. Science, 2022, 376(6597):1122-1126 Gill R J, Ramos-Rodriguez O, Raine N E. Combined pesticide exposure severely affects individual- and colony-level traits in bees[J]. Nature, 2012, 491(7422):105-108 Helander M, Lehtonen T K, Saikkonen K, et al. Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees[J]. The Science of the Total Environment, 2023, 857(Pt 1):159298 李正阳, 王玉波, 刘佩杭, 等. 5种设施常用农药对欧洲熊蜂的毒力及残毒测定[J]. 河北林果研究, 2017, 32(1):61-64 Li Z Y, Wang Y B, Liu P H, et al. Toxicity determination and residual of five pesticides on Bombus terrestris in greenhouse[J]. Hebei Journal of Forestry and Orchard Research, 2017, 32(1):61-64(in Chinese)
王烁, 谢丽霞, 陈浩, 等. 八种新烟碱类杀虫剂对地熊蜂工蜂的毒性及风险评估[J]. 昆虫学报, 2020, 63(1):29-35 Wang S, Xie L X, Chen H, et al. Toxicity and risk assessment of eight neonicotinoid insecticides to workers of Bombus terrestris (Hymenoptera:Apoidea)[J]. Acta Entomologica Sinica, 2020, 63(1):29-35(in Chinese)
王宏栋, 韩冰, 王玉赛, 等. 11种常用农药对地熊蜂工蜂的毒性和风险评估[J]. 昆虫学报, 2021, 64(11):1350-1358 Wang H D, Han B, Wang Y S, et al. Toxicity and risk assessment of eleven pesticides to workers of Bombus terrestris (Hymenoptera:Apidae)[J]. Acta Entomologica Sinica, 2021, 64(11):1350-1358(in Chinese)
廖秀丽, 刘佳霖, 罗术东, 等. 5种设施农业常用农药对2种熊蜂的毒效评价[J]. 西北农业学报, 2013, 22(4):191-195 Liao X L, Liu J L, Luo S D, et al. Evaluation the toxicity of five pesticides to two species of bumblebees[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(4):191-195(in Chinese)
Reid R J, Troczka B J, Kor L, et al. Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax)[J]. Pesticide Biochemistry and Physiology, 2020, 166:104562 Rosenberger D W, Conforti M L. Native and agricultural grassland use by stable and declining bumble bees in Midwestern North America[J]. Insect Conservation and Diversity, 2020, 13(6):585-594 Hladik M L, Main A R, Goulson D. Environmental risks and challenges associated with neonicotinoid insecticides[J]. Environmental Science & Technology, 2018, 52(6):3329-3335 Wood T J, Goulson D. The environmental risks of neonicotinoid pesticides:A review of the evidence post 2013[J]. Environmental Science and Pollution Research, 2017, 24(21):17285-17325 Gradish A E, van der Steen J, Scott-Dupree C D, et al. Comparison of pesticide exposure in honey bees (Hymenoptera:Apidae) and bumble bees (Hymenoptera:Apidae):Implications for risk assessments[J]. Environmental Entomology, 2019, 48(1):12-21 Kessler S C, Tiedeken E J, Simcock K L, et al. Bees prefer foods containing neonicotinoid pesticides[J]. Nature, 2015, 521(7550):74-76 Thompson L J, Smith S, Stout J C, et al. Bumblebees can be exposed to the herbicide glyphosate when foraging[J]. Environmental Toxicology and Chemistry, 2022, 41(10):2603-2612 Syromyatnikov M Y, Kokina A V, Lopatin A V, et al. Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.)[J]. Pesticide Biochemistry and Physiology, 2017, 135:41-46 Conceição de Assis J, Eduardo da Costa Domingues C, Tadei R, et al. Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary beeTetrapedia diversipes (Klug, 1810)[J]. Environmental Pollution, 2022, 304:119140 Jiang X G, Hansen H C B, Strobel B W, et al. What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides?[J]. Environmental Pollution, 2018, 236:416-424 Pino-Otín M R, Ballestero D, Navarro E, et al. Ecotoxicity of a novel biopesticide from Artemisia absinthium on non-target aquatic organisms[J]. Chemosphere, 2019, 216:131-146 Switzer C M, Combes S A. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50[J]. Ecotoxicology, 2016, 25(6):1150-1159 Stanley D A, Raine N E. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants[J]. Functional Ecology, 2016, 30(7):1132-1139 Straub F, Orih I J, Kimmich J, et al. Negative effects of the neonicotinoid clothianidin on foraging behavior and antennal sensitivity in two common pollinator species, Osmia bicornis and Bombus terrestris[J]. Frontiers in Ecology and Evolution, 2021, 9:697355 Hotchkiss M Z, Poulain A J, Forrest J R K. Pesticide-induced disturbances of bee gut microbiotas[J]. FEMS Microbiology Reviews, 2022, 46(2):1-22 Kwong W K, Moran N A. Gut microbial communities of social bees[J]. Nature Reviews Microbiology, 2016, 14(6):374-384 Su Q Z, Wang Q L, Mu X H, et al. Strain-level analysis reveals the vertical microbial transmission during the life cycle of bumblebee[J]. Microbiome, 2021, 9(1):216 Zhang Z J, Huang M F, Qiu L F, et al. Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella[J]. Insect Science, 2021, 28(2):302-314 Cornet L, Cleenwerck I, Praet J, et al. Phylogenomic analyses of Snodgrassella isolates from honeybees and bumblebees reveal taxonomic and functional diversity[J]. mSystems, 2022, 7(3):e0150021 陈奕霏, 董志祥, 李还原, 等. 肠道菌群在蜜蜂健康与疾病中的作用研究进展[J]. 微生物学杂志, 2021, 41(2):92-100 Chen Y F, Dong Z X, Li H Y, et al. Advances in the role of enteric duct microbial population (EDMP) in honeybees' health and diseases[J]. Journal of Microbiology, 2021, 41(2):92-100(in Chinese)
Engel P, Kwong W K, McFrederick Q, et al. The bee microbiome:Impact on bee health and model for evolution and ecology of host-microbe interactions[J]. mBio, 2016, 7(2):e02164-e02115 Zheng H, Nishida A, Kwong W K, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola[J]. mBio, 2016, 7(6):e01326-e01316 Praet J, Parmentier A, Schmid-Hempel R, et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition[J]. Environmental Microbiology, 2018, 20(1):214-227 Cariveau D P, Elijah Powell J, Koch H, et al. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus)[J]. The ISME Journal, 2014, 8(12):2369-2379 Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(48):19288-19292 Zhang Q C, Wang Q L, Zhai Y F, et al. Impacts of imidacloprid and flupyradifurone insecticides on the gut microbiota of Bombus terrestris[J]. Agriculture, 2022, 12(3):389 Rothman J A, Russell K A, Leger L, et al. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes[J]. Proceedings Biological Sciences, 2020, 287(1937):20200980 Powell E, Ratnayeke N, Moran N A. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees[J]. Molecular Ecology, 2016, 25(18):4461-4471 Johnson R M. Honey bee toxicology[J]. Annual Review of Entomology, 2015, 60:415-434 Xu J H, Strange J P, Welker D L, et al. Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera:Apidae)[J]. BMC Genomics, 2013, 14:874 李佳欢, 齐素贞, 吴黎明, 等. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5):314-325 Li J H, Qi S Z, Wu L M, et al. Sublethal effects of fipronil on larvae and young worker honey bees (Apis mellifera ligustica)[J]. Asian Journal of Ecotoxicology, 2021, 16(5):314-325(in Chinese)
Haas J, Glaubitz J, Koenig U, et al. A mechanism-based approach unveils metabolic routes potentially mediating chlorantraniliprole synergism in honey bees, Apis mellifera L., by azole fungicides[J]. Pest Management Science, 2022, 78(3):965-973 Coleman T, Kirk A M, Chao R R, et al. Understanding the mechanistic requirements for efficient and stereoselective alkene epoxidation by a cytochrome P450 enzyme[J]. ACS Catalysis, 2021, 11(4):1995-2010 Feyereisen R. Insect Molecular Biology and Biochemistry[M]. San Diego:Academic Press, 2012:236-316 Shumyantseva V V, Kuzikov A V, Masamrekh R A, et al. From electrochemistry to enzyme kinetics of cytochrome P450[J]. Biosensors & Bioelectronics, 2018, 121:192-204 Hu B D, Zhao X R, Wang E D, et al. Efficient heterologous expression of cytochrome P450 enzymes in microorganisms for the biosynthesis of natural products[J]. Critical Reviews in Biotechnology, 2023, 43(2):227-241 朱江, 邱星辉. 昆虫抗药性相关细胞色素P450基因的表达调控机制[J]. 昆虫学报, 2021, 64(1):109-120 Zhu J, Qiu X H. Molecular mechanisms of expression regulation of insect cytochrome P450 genes involved in insecticide resistance[J]. Acta Entomologica Sinica, 2021, 64(1):109-120(in Chinese)
Manjon C, Troczka B J, Zaworra M, et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides[J]. Current Biology, 2018, 28(7):1137-1143.e5 Troczka B J, Homem R A, Reid R, et al. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris[J]. Insect Biochemistry and Molecular Biology, 2019, 111:103171 Feyereisen R. Toxicology:Bee P450s take the sting out of cyanoamidine neonicotinoids[J]. Current Biology, 2018, 28(9):R560-R562 Bebane P S A, Hunt B J, Pegoraro M, et al. The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the buff-tailed bumblebee Bombus terrestris[J]. Proceedings Biological Sciences, 2019, 286(1905):20190718 Cresswell J E, Page C J, Uygun M B, et al. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid)[J]. Zoology, 2012, 115(6):365-371 Zhang Q, Fu L L, Cang T, et al. Toxicological effect and molecular mechanism of the chiral neonicotinoid dinotefuran in honeybees[J]. Environmental Science & Technology, 2022, 56(2):1104-1112 Stoner K A. Current pesticide risk assessment protocols do not adequately address differences between honey bees (Apis mellifera) and bumble bees (Bombus spp.)[J]. Frontiers in Environmental Science, 2016, 4:79 Gong Y H, Diao Q Y. Current knowledge of detoxification mechanisms of xenobiotic in honey bees[J]. Ecotoxicology, 2017, 26(1):1-12 Johnson R M, Mao W F, Pollock H S, et al. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera[J]. PLoS One, 2012, 7(2):e31051 -

计量
- 文章访问数: 2223
- HTML全文浏览数: 2223
- PDF下载数: 146
- 施引文献: 0