农药对熊蜂的生态毒理研究进展

韩磊, 任昌仕, 袁亦戈, Guy Smagghe, 龙见坤, 陈祥盛, 常志敏. 农药对熊蜂的生态毒理研究进展[J]. 生态毒理学报, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002
引用本文: 韩磊, 任昌仕, 袁亦戈, Guy Smagghe, 龙见坤, 陈祥盛, 常志敏. 农药对熊蜂的生态毒理研究进展[J]. 生态毒理学报, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002
Han Lei, Ren Changshi, Yuan Yige, Guy Smagghe, Long Jiankun, Chen Xiangsheng, Chang Zhimin. Progress in Pesticide Toxicology Research on Bumblebees[J]. Asian journal of ecotoxicology, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002
Citation: Han Lei, Ren Changshi, Yuan Yige, Guy Smagghe, Long Jiankun, Chen Xiangsheng, Chang Zhimin. Progress in Pesticide Toxicology Research on Bumblebees[J]. Asian journal of ecotoxicology, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002

农药对熊蜂的生态毒理研究进展

    作者简介: 韩磊(1998-),男,硕士研究生,研究方向为熊蜂生态毒理学,E-mail:hlhl990105@163.com
    通讯作者: 常志敏,E-mail:cczzmm111@126.com
  • 基金项目:

    贵州省科技计划项目(黔科合基础[2018]1032);黔东南州科技计划项目(黔东南科合支撑[2021]07号)

  • 中图分类号: X171.5

Progress in Pesticide Toxicology Research on Bumblebees

    Corresponding author: Chang Zhimin, cczzmm111@126.com
  • Fund Project:
  • 摘要: 熊蜂(Bombus spp.)因其独特形态特征及生物学特性成为农业生产中重要传粉昆虫,在维持自然及农业生态系统平衡发挥重要作用。近年来,熊蜂多样性呈减少趋势,农药不合理施用为重要因素之一。本文基于农药对熊蜂的毒理学研究现状,系统整理了熊蜂急性致死和慢性亚致死毒理研究方法,围绕农药对熊蜂的急性毒性,亚致死剂量农药对熊蜂精子活性及体温调节等生理发育,颜色分辨及学习记忆行为、肠道微生物结构及解毒因子等方面影响展开综述,对研究中存在的问题和未来研究方向进行了思考和展望,旨在为农药的科学使用、生物环境安全评估及熊蜂多样性保护提供参考。
  • 加载中
  • van der Sluijs J P, Vaage N S. Pollinators and global food security:The need for holistic global stewardship[J]. Food Ethics, 2016, 1(1):75-91
    欧阳芳, 王丽娜, 闫卓, 等. 中国农业生态系统昆虫授粉功能量与服务价值评估[J]. 生态学报, 2019, 39(1):131-145

    Ouyang F, Wang L N, Yan Z, et al. Evaluation of insect pollination and service value in China's agricultural ecosystems[J]. Acta Ecologica Sinica, 2019, 39(1):131-145(in Chinese)

    秦加敏, 苏睿, 梁铖, 等. 熊蜂生物学及种群影响因素研究进展[J]. 环境昆虫学报, 2020, 42(6):1383-1393

    Qin J M, Su R, Liang C, et al. Research progress of biology and population influencing factors in bumblebee[J]. Journal of Environmental Entomology, 2020, 42(6):1383-1393(in Chinese)

    Lemanski N J, Williams N M, Winfree R. Greater bee diversity is needed to maintain crop pollination over time[J]. Nature Ecology & Evolution, 2022, 6(10):1516-1523
    黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5):486-497

    Huang J X, An J D. Species diversity, pollination application and strategy for conservation of the bumblebees of China[J]. Biodiversity Science, 2018, 26(5):486-497(in Chinese)

    钟培星, 谢再成, 吴延旭, 等. 熊蜂对油茶授粉结实的影响初探[J]. 中国蜂业, 2019, 70(7):69-72

    Zhong P X, Xie Z C, Wu Y X, et al. Study on the effects of pollination by Bombus terrestris on Camellia oleifera[J]. Apiculture of China, 2019, 70(7):69-72(in Chinese)

    安建东, 童越敏, 国占宝, 等. 熊蜂为温室茄子授粉试验[J]. 中国养蜂, 2004, 55(3):7-8

    An J D, Tong Y M, Guo Z B, et al. A study on Bombus terrestris pollination to greenhouse eggplant[J]. Apiculture of China, 2004, 55(3):7-8(in Chinese)

    国占宝, 安建东, 彭文君, 等. 熊蜂和蜜蜂为日光温室甜椒授粉的研究[J]. 中国养蜂, 2005, 56(10):8-9

    Guo Z B, An J D, Peng W J, et al. Research which the bumblebee and honeybee pollinate for the sweet pepper of sunlight greenhouse[J]. Apiculture of China, 2005, 56(10):8-9(in Chinese)

    程尚, 周容, 罗文华, 等. 熊蜂为温室番茄授粉的效果研究[J]. 四川畜牧兽医, 2011, 38(2):23-24

    Cheng S, Zhou R, Luo W H, et al. Effect of Bombus terrestris pollination on greenhouse tomato[J]. Sichuan Animal & Veterinary Sciences, 2011, 38(2):23-24(in Chinese)

    吴光安, 尹园园, 陈浩, 等. 地熊蜂和意大利蜜蜂为设施蓝莓授粉效果比较研究[J]. 中国蜂业, 2019, 70(9):68-70

    Wu G A, Yin Y Y, Chen H, et al. Comparative study on pollination by Bombus terrestris and Apis mellifera for blueberry in greenhouse[J]. Apiculture of China, 2019, 70(9):68-70(in Chinese)

    孙永深, 安建东, 童越敏, 等. 熊蜂(Bombus terrestris)为温室黄瓜授粉的效果研究[J]. 蜜蜂杂志, 2003, 23(8):3-5

    Sun Y S, An J D, Tong Y M, et al. A study on the effect of Bombus terrestris pollination to greenhouse cucumber[J]. Journal of Bee, 2003, 23(8):3-5(in Chinese)

    Brown M J F. The trouble with bumblebees[J]. Nature, 2011, 469(7329):169-170
    Knop E, Zoller L, Ryser R, et al. Artificial light at night as a new threat to pollination[J]. Nature, 2017, 548(7666):206-209
    Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being[J]. Nature, 2016, 540(7632):220-229
    Pimentel D. Amounts of pesticides reaching target pests:Environmental impacts and ethics[J]. Journal of Agricultural and Environmental Ethics, 1995, 8(1):17-29
    Yatoo A M, Ali M N, Zaheen Z, et al. Assessment of pesticide toxicity on earthworms using multiple biomarkers:A review[J]. Environmental Chemistry Letters, 2022, 20(4):2573-2596
    Feltham H, Park K, Goulson D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency[J]. Ecotoxicology, 2014, 23(3):317-323
    Stanley D A, Garratt M P, Wickens J B, et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees[J]. Nature, 2015, 528(7583):548-550
    Stanley D A, Russell A L, Morrison S J, et al. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth[J]. The Journal of Applied Ecology, 2016, 53(5):1440-1449
    Phelps J D, Strang C G, Sherry D F. Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens)[J]. Ecotoxicology, 2020, 29(3):359-374
    Organisation for Economic Co-operation and Development (OECD). Honeybees, acute oral toxicity test[R]. Paris:OECD, 1998
    Besard L, Mommaerts V, Vandeven J, et al. Compatibility of traditional and novel acaricides with bumblebees (Bombus terrestris):A first laboratory assessment of toxicity and sublethal effects[J]. Pest Management Science, 2010, 66(7):786-793
    Thompson H M, Hunt L V. Extrapolating from honeybees to bumblebees in pesticide risk assessment[J]. Ecotoxicology, 1999, 8(3):147-166
    Organisation for Economic Co-operation and Development (OECD). Bumblebee, acute oral toxicity test[R]. Paris:OECD, 2017
    Auteri D, Arce A, Ingels B, et al. Analysis of the evidence to support the definition of Specific Protection Goals for bumble bees and solitary bees[J]. EFSA Supporting Publications, 2022, 19(1):1-43
    常菊花, 何月平. 应用Polo软件进行农药毒力数据的比较分析[J]. 浙江农业学报, 2014, 26(6):1552-1557

    Chang J H, He Y P. The analysis for comparing the pesticide toxicity data using the Polo software[J]. Acta Agriculturae Zhejiangensis, 2014, 26(6):1552-1557(in Chinese)

    European and Mediterranean Plant Protection Organization (EPPO). EPPO Bulletin:Chapter 10:Honeybees[M]. John Wiley & Sons, Ltd, 2010:323-331
    European Food Safety Authority (EFSA). Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees)[J]. EFSA Journal, 2013, 11(7):3295
    宋怀磊, 周婷, 王强, 等. 杀虫剂对蜜蜂的亚致死效应[J]. 中国蜂业, 2010, 61(6):8-10

    Song H L, Zhou T, Wang Q, et al. Research advance in sublethal effects of pesticides on honeybee[J]. Apiculture of China, 2010, 61(6):8-10(in Chinese)

    European Food Safety Authority (EFSA). Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees)[J]. EFSA Journal, 2012, 10(5):2668
    Demirozer O, Uzun A, Gosterit A. Lethal and sublethal effects of different biopesticides on Bombus terrestris (Hymenoptera:Apidae)[J]. Apidologie, 2022, 53(2):1-13
    Balfour N J, Al Toufailia H, Scandian L, et al. Landscape scale study of the net effect of proximity to a neonicotinoid-treated crop on bee colony health[J]. Environmental Science & Technology, 2017, 51(18):10825-10833
    Barbosa W F, de Meyer L, Guedes R N, et al. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera:Apidae)[J]. Ecotoxicology, 2015, 24(1):130-142
    尹令虹. 亚致死浓度噻虫啉对西方蜜蜂工蜂学习记忆的影响[D]. 北京:中国农业科学院, 2021:7-8 Yin L H. Effects of sublethal concentration of thiacloprid on learning and memory of Apis mellifera worker bees[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021:7

    -8(in Chinese)

    Gradish A E, Scott-Dupree C D, Shipp L, et al. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera:Apidae)[J]. Pest Management Science, 2010, 66(2):142-146
    Morandin L A, Winston M L, Franklin M T, et al. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson)[J]. Pest Management Science, 2005, 61(7):619-626
    Klinger E G, Camp A A, Strange J P, et al. Bombus (Hymenoptera:Apidae) microcolonies as a tool for biological understanding and pesticide risk assessment[J]. Environmental Entomology, 2019, 48(6):1249-1259
    Siviter H, Brown M J F, Leadbeater E. Sulfoxaflor exposure reduces bumblebee reproductive success[J]. Nature, 2018, 561(7721):109-112
    Minnameyer A, Strobl V, Bruckner S, et al. Eusocial insect declines:Insecticide impairs sperm and feeding glands in bumblebees[J]. The Science of the Total Environment, 2021, 785:146955
    Rothman J A, Russell K A, Leger L, et al. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes[J]. Proceedings Biological Sciences, 2020, 287(1937):20200980
    Motta E V S, Moran N A. The effects of glyphosate, pure or in herbicide formulation, on bumble bees and their gut microbial communities[J]. The Science of the Total Environment, 2023, 872:162102
    Tang Q H, Li W L, Wang J P, et al. Effects of spinetoram and glyphosate on physiological biomarkers and gut microbes in Bombus terrestris[J]. Frontiers in Physiology, 2022, 13:1054742
    Syromyatnikov M Y, Gureev A P, Starkova N N, et al. Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus terrestris L.)[J]. Pesticide Biochemistry and Physiology, 2020, 169:104675
    Weidenmüller A, Meltzer A, Neupert S, et al. Glyphosate impairs collective thermoregulation in bumblebees[J]. Science, 2022, 376(6597):1122-1126
    Gill R J, Ramos-Rodriguez O, Raine N E. Combined pesticide exposure severely affects individual- and colony-level traits in bees[J]. Nature, 2012, 491(7422):105-108
    Helander M, Lehtonen T K, Saikkonen K, et al. Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees[J]. The Science of the Total Environment, 2023, 857(Pt 1):159298
    李正阳, 王玉波, 刘佩杭, 等. 5种设施常用农药对欧洲熊蜂的毒力及残毒测定[J]. 河北林果研究, 2017, 32(1):61-64

    Li Z Y, Wang Y B, Liu P H, et al. Toxicity determination and residual of five pesticides on Bombus terrestris in greenhouse[J]. Hebei Journal of Forestry and Orchard Research, 2017, 32(1):61-64(in Chinese)

    王烁, 谢丽霞, 陈浩, 等. 八种新烟碱类杀虫剂对地熊蜂工蜂的毒性及风险评估[J]. 昆虫学报, 2020, 63(1):29-35

    Wang S, Xie L X, Chen H, et al. Toxicity and risk assessment of eight neonicotinoid insecticides to workers of Bombus terrestris (Hymenoptera:Apoidea)[J]. Acta Entomologica Sinica, 2020, 63(1):29-35(in Chinese)

    王宏栋, 韩冰, 王玉赛, 等. 11种常用农药对地熊蜂工蜂的毒性和风险评估[J]. 昆虫学报, 2021, 64(11):1350-1358

    Wang H D, Han B, Wang Y S, et al. Toxicity and risk assessment of eleven pesticides to workers of Bombus terrestris (Hymenoptera:Apidae)[J]. Acta Entomologica Sinica, 2021, 64(11):1350-1358(in Chinese)

    廖秀丽, 刘佳霖, 罗术东, 等. 5种设施农业常用农药对2种熊蜂的毒效评价[J]. 西北农业学报, 2013, 22(4):191-195

    Liao X L, Liu J L, Luo S D, et al. Evaluation the toxicity of five pesticides to two species of bumblebees[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(4):191-195(in Chinese)

    Reid R J, Troczka B J, Kor L, et al. Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax)[J]. Pesticide Biochemistry and Physiology, 2020, 166:104562
    Rosenberger D W, Conforti M L. Native and agricultural grassland use by stable and declining bumble bees in Midwestern North America[J]. Insect Conservation and Diversity, 2020, 13(6):585-594
    Hladik M L, Main A R, Goulson D. Environmental risks and challenges associated with neonicotinoid insecticides[J]. Environmental Science & Technology, 2018, 52(6):3329-3335
    Wood T J, Goulson D. The environmental risks of neonicotinoid pesticides:A review of the evidence post 2013[J]. Environmental Science and Pollution Research, 2017, 24(21):17285-17325
    Gradish A E, van der Steen J, Scott-Dupree C D, et al. Comparison of pesticide exposure in honey bees (Hymenoptera:Apidae) and bumble bees (Hymenoptera:Apidae):Implications for risk assessments[J]. Environmental Entomology, 2019, 48(1):12-21
    Kessler S C, Tiedeken E J, Simcock K L, et al. Bees prefer foods containing neonicotinoid pesticides[J]. Nature, 2015, 521(7550):74-76
    Thompson L J, Smith S, Stout J C, et al. Bumblebees can be exposed to the herbicide glyphosate when foraging[J]. Environmental Toxicology and Chemistry, 2022, 41(10):2603-2612
    Syromyatnikov M Y, Kokina A V, Lopatin A V, et al. Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.)[J]. Pesticide Biochemistry and Physiology, 2017, 135:41-46
    Conceição de Assis J, Eduardo da Costa Domingues C, Tadei R, et al. Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary beeTetrapedia diversipes (Klug, 1810)[J]. Environmental Pollution, 2022, 304:119140
    Jiang X G, Hansen H C B, Strobel B W, et al. What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides?[J]. Environmental Pollution, 2018, 236:416-424
    Pino-Otín M R, Ballestero D, Navarro E, et al. Ecotoxicity of a novel biopesticide from Artemisia absinthium on non-target aquatic organisms[J]. Chemosphere, 2019, 216:131-146
    Switzer C M, Combes S A. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50[J]. Ecotoxicology, 2016, 25(6):1150-1159
    Stanley D A, Raine N E. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants[J]. Functional Ecology, 2016, 30(7):1132-1139
    Straub F, Orih I J, Kimmich J, et al. Negative effects of the neonicotinoid clothianidin on foraging behavior and antennal sensitivity in two common pollinator species, Osmia bicornis and Bombus terrestris[J]. Frontiers in Ecology and Evolution, 2021, 9:697355
    Hotchkiss M Z, Poulain A J, Forrest J R K. Pesticide-induced disturbances of bee gut microbiotas[J]. FEMS Microbiology Reviews, 2022, 46(2):1-22
    Kwong W K, Moran N A. Gut microbial communities of social bees[J]. Nature Reviews Microbiology, 2016, 14(6):374-384
    Su Q Z, Wang Q L, Mu X H, et al. Strain-level analysis reveals the vertical microbial transmission during the life cycle of bumblebee[J]. Microbiome, 2021, 9(1):216
    Zhang Z J, Huang M F, Qiu L F, et al. Diversity and functional analysis of Chinese bumblebee gut microbiota reveal the metabolic niche and antibiotic resistance variation of Gilliamella[J]. Insect Science, 2021, 28(2):302-314
    Cornet L, Cleenwerck I, Praet J, et al. Phylogenomic analyses of Snodgrassella isolates from honeybees and bumblebees reveal taxonomic and functional diversity[J]. mSystems, 2022, 7(3):e0150021
    陈奕霏, 董志祥, 李还原, 等. 肠道菌群在蜜蜂健康与疾病中的作用研究进展[J]. 微生物学杂志, 2021, 41(2):92-100

    Chen Y F, Dong Z X, Li H Y, et al. Advances in the role of enteric duct microbial population (EDMP) in honeybees' health and diseases[J]. Journal of Microbiology, 2021, 41(2):92-100(in Chinese)

    Engel P, Kwong W K, McFrederick Q, et al. The bee microbiome:Impact on bee health and model for evolution and ecology of host-microbe interactions[J]. mBio, 2016, 7(2):e02164-e02115
    Zheng H, Nishida A, Kwong W K, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola[J]. mBio, 2016, 7(6):e01326-e01316
    Praet J, Parmentier A, Schmid-Hempel R, et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition[J]. Environmental Microbiology, 2018, 20(1):214-227
    Cariveau D P, Elijah Powell J, Koch H, et al. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus)[J]. The ISME Journal, 2014, 8(12):2369-2379
    Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(48):19288-19292
    Zhang Q C, Wang Q L, Zhai Y F, et al. Impacts of imidacloprid and flupyradifurone insecticides on the gut microbiota of Bombus terrestris[J]. Agriculture, 2022, 12(3):389
    Rothman J A, Russell K A, Leger L, et al. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes[J]. Proceedings Biological Sciences, 2020, 287(1937):20200980
    Powell E, Ratnayeke N, Moran N A. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees[J]. Molecular Ecology, 2016, 25(18):4461-4471
    Johnson R M. Honey bee toxicology[J]. Annual Review of Entomology, 2015, 60:415-434
    Xu J H, Strange J P, Welker D L, et al. Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera:Apidae)[J]. BMC Genomics, 2013, 14:874
    李佳欢, 齐素贞, 吴黎明, 等. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5):314-325

    Li J H, Qi S Z, Wu L M, et al. Sublethal effects of fipronil on larvae and young worker honey bees (Apis mellifera ligustica)[J]. Asian Journal of Ecotoxicology, 2021, 16(5):314-325(in Chinese)

    Haas J, Glaubitz J, Koenig U, et al. A mechanism-based approach unveils metabolic routes potentially mediating chlorantraniliprole synergism in honey bees, Apis mellifera L., by azole fungicides[J]. Pest Management Science, 2022, 78(3):965-973
    Coleman T, Kirk A M, Chao R R, et al. Understanding the mechanistic requirements for efficient and stereoselective alkene epoxidation by a cytochrome P450 enzyme[J]. ACS Catalysis, 2021, 11(4):1995-2010
    Feyereisen R. Insect Molecular Biology and Biochemistry[M]. San Diego:Academic Press, 2012:236-316
    Shumyantseva V V, Kuzikov A V, Masamrekh R A, et al. From electrochemistry to enzyme kinetics of cytochrome P450[J]. Biosensors & Bioelectronics, 2018, 121:192-204
    Hu B D, Zhao X R, Wang E D, et al. Efficient heterologous expression of cytochrome P450 enzymes in microorganisms for the biosynthesis of natural products[J]. Critical Reviews in Biotechnology, 2023, 43(2):227-241
    朱江, 邱星辉. 昆虫抗药性相关细胞色素P450基因的表达调控机制[J]. 昆虫学报, 2021, 64(1):109-120

    Zhu J, Qiu X H. Molecular mechanisms of expression regulation of insect cytochrome P450 genes involved in insecticide resistance[J]. Acta Entomologica Sinica, 2021, 64(1):109-120(in Chinese)

    Manjon C, Troczka B J, Zaworra M, et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides[J]. Current Biology, 2018, 28(7):1137-1143.e5
    Troczka B J, Homem R A, Reid R, et al. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris[J]. Insect Biochemistry and Molecular Biology, 2019, 111:103171
    Feyereisen R. Toxicology:Bee P450s take the sting out of cyanoamidine neonicotinoids[J]. Current Biology, 2018, 28(9):R560-R562
    Bebane P S A, Hunt B J, Pegoraro M, et al. The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the buff-tailed bumblebee Bombus terrestris[J]. Proceedings Biological Sciences, 2019, 286(1905):20190718
    Cresswell J E, Page C J, Uygun M B, et al. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid)[J]. Zoology, 2012, 115(6):365-371
    Zhang Q, Fu L L, Cang T, et al. Toxicological effect and molecular mechanism of the chiral neonicotinoid dinotefuran in honeybees[J]. Environmental Science & Technology, 2022, 56(2):1104-1112
    Stoner K A. Current pesticide risk assessment protocols do not adequately address differences between honey bees (Apis mellifera) and bumble bees (Bombus spp.)[J]. Frontiers in Environmental Science, 2016, 4:79
    Gong Y H, Diao Q Y. Current knowledge of detoxification mechanisms of xenobiotic in honey bees[J]. Ecotoxicology, 2017, 26(1):1-12
    Johnson R M, Mao W F, Pollock H S, et al. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera[J]. PLoS One, 2012, 7(2):e31051
  • 加载中
计量
  • 文章访问数:  2223
  • HTML全文浏览数:  2223
  • PDF下载数:  146
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-02-10
韩磊, 任昌仕, 袁亦戈, Guy Smagghe, 龙见坤, 陈祥盛, 常志敏. 农药对熊蜂的生态毒理研究进展[J]. 生态毒理学报, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002
引用本文: 韩磊, 任昌仕, 袁亦戈, Guy Smagghe, 龙见坤, 陈祥盛, 常志敏. 农药对熊蜂的生态毒理研究进展[J]. 生态毒理学报, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002
Han Lei, Ren Changshi, Yuan Yige, Guy Smagghe, Long Jiankun, Chen Xiangsheng, Chang Zhimin. Progress in Pesticide Toxicology Research on Bumblebees[J]. Asian journal of ecotoxicology, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002
Citation: Han Lei, Ren Changshi, Yuan Yige, Guy Smagghe, Long Jiankun, Chen Xiangsheng, Chang Zhimin. Progress in Pesticide Toxicology Research on Bumblebees[J]. Asian journal of ecotoxicology, 2023, 18(4): 102-114. doi: 10.7524/AJE.1673-5897.20230210002

农药对熊蜂的生态毒理研究进展

    通讯作者: 常志敏,E-mail:cczzmm111@126.com
    作者简介: 韩磊(1998-),男,硕士研究生,研究方向为熊蜂生态毒理学,E-mail:hlhl990105@163.com
  • 1. 贵州大学高原山地动物遗传育种与繁殖教育部重点实验室/贵州省动物遗传育种与繁殖重点实验室/动物科学学院, 贵阳 550025;
  • 2. 贵州大学昆虫研究所/昆虫资源开发利用省级特色重点实验室, 贵阳 550025
基金项目:

贵州省科技计划项目(黔科合基础[2018]1032);黔东南州科技计划项目(黔东南科合支撑[2021]07号)

摘要: 熊蜂(Bombus spp.)因其独特形态特征及生物学特性成为农业生产中重要传粉昆虫,在维持自然及农业生态系统平衡发挥重要作用。近年来,熊蜂多样性呈减少趋势,农药不合理施用为重要因素之一。本文基于农药对熊蜂的毒理学研究现状,系统整理了熊蜂急性致死和慢性亚致死毒理研究方法,围绕农药对熊蜂的急性毒性,亚致死剂量农药对熊蜂精子活性及体温调节等生理发育,颜色分辨及学习记忆行为、肠道微生物结构及解毒因子等方面影响展开综述,对研究中存在的问题和未来研究方向进行了思考和展望,旨在为农药的科学使用、生物环境安全评估及熊蜂多样性保护提供参考。

English Abstract

参考文献 (96)

返回顶部

目录

/

返回文章
返回