无机离子对左旋葡聚糖光降解的影响
Effect of inorganic ions on photodegradation of Levoglucosan
-
摘要: 左旋葡聚糖(LG)被广泛作为生物质燃烧的示踪剂.然而,近年来研究表明左旋葡聚糖在大气中不稳定而会发生光降解.此外,对于大气中含量较高的SO42-、NO3-、NO2-无机离子对LG光解的影响罕有报到.为此,本文模拟了液相中SO42-、NO3-、NO2-对LG光氧化行为的影响.结果表明,Na2SO4、NaNO3、NaNO2条件下LG光解速率常数分别为0.208、0.182、0.165 min-1,均低于对照组(0.266 min-1),这表明无机离子的存在会减缓LG光降解速率.此外,这3种无机离子对LG光解产物中的低分子脂肪酸分布,甲酸/乙酸(C1/C2)比率均有重要的影响.其中,SO42-存在下产物中戊二酸较多、NO3-存在下产物中甲酸较多、NO2-存在下产物中乙酸较多;NO2-存在下产物中的C1/C2比率小于1与一般二次源中的C1/C2比率不一致,这表明由单一反应引起的C1/C2并不总是大于1.这些结果对于我们深刻理解大气液相中的有机物转化具有重要的参考价值.Abstract: Levoglucosan (LG) is widely used as a tracer for biomass combustion. However, recent studies have shown that LG is unstable in the atmosphere and undergoes photodegradation. In addition, the effects of relatively high levels of SO42-, NO3-, and NO2- on LG photolysis have not been reported. To this end, the effects of SO42-, NO3-, and NO2- in the liquid phase on the photooxidative degradation of LG were simulated. The results showed that the photodegradation rate constants of LG under the conditions of Na2SO4, NaNO3, and NaNO2 were 0.208, 0.182, and 0.165 min-1, which were all lower than those of the control group (0.266 min-1). This indicated that the presence of inorganic ions would slow the LG photodegradation rate. In addition, these three inorganic ions had important effects on the distribution of low-molecular-weight fatty acids and the formic acid/acetic acid (C1/C2) ratio in LG photolysis products. Among them, there was more glutaric acid in the product in the presence of SO42-, more formic acid in the product in the presence of NO3-, more acetic acid in the product in the presence of NO2-; The C1/C2 ratios in the secondary sources were not consistent, which indicated that the C1/C2 caused by a single reaction was not always>1. These results had important reference value for our deep understanding of the conversion of organics in the atmospheric liquid phase.
-
Key words:
- inorganic ions /
- levoglucosan /
- photodegradation /
- fatty acid
-
[1] DSIMONEIT B R T. Biomass burning-a review of organic tracers for smoke from incomplete combustion[J]. Applied Geochemistry, 2003, 17(3):129-162. [2] JORDAN T B, SEEN A J, JACOBSEN G E. Levoglucosan as an atmospheric tracer for woodsmoke[J]. Atmospheric Environment,2006, 40(27):5316-5321. [3] SIMONEIT B R T, SCHAUER J J. NOLTE C G, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric Environment, 1999, 33(2):173-182. [4] HENNIGAN C J, SULLIVAN A P, COLLETT JR J L, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals[J]. Geophysical Research Letters, 2010, 37(9):9806-9808. [5] FUKUTOME A, KAWAMOTO H, SAKA S, et al. Kinetics and molecular mechanisms for the gas-phase degradation of levoglucosan as a cellulose gasification intermediate[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:666-676. [6] HOSOYA H, KAWAMOTO H, SAKA S. Different pyrolytic pathways of levoglucosan in vapor- and liquid/solid-phases[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1):64-70. [7] LAI C Y, LIU Y C, MA J Z, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions[J]. Atmospheric Environment, 2014, 91:32-39. [8] BHATTARAI H, SAIKAWA E, WAN X, et al. Levoglucosan as a tracer of biomass burning:Recent progress and perspectives[J]. Atmospheric Research, 2019, 220:20-33. [9] KESSLER S H, SMITH J D, CHE D L. Chemical sinks of organic aerosol:kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan[J]. Environmental Science & Technology, 2010, 44(18):7005-7010. [10] ZHAO R, MUNGALL E L, LEE A K Y, et al. Aqueous-phase photooxidation of levoglucosan-a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)[J]. Atmospheric Chemistry and Physics, 2014, 14(18):9695-9706. [11] ABDILLA R M, RASRENDRA C B, HEERES H J. Kinetic studies on the conversion of levoglucosan to glucose in water using bronsted acids as the catalyst[J]. Industrial and Engineering Chemistry Research, 2018, 57(9):3204-3214. [12] HOLMES B J, PETRUCCI G A. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols[J]. Journal of Atmospheric Chemistry, 2007, 58(2):151- 166. [13] HOLMES B J, PETRUCCI G A. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols[J]. Environmental Science & Technology, 2006, 40(16):4983- 4989. [14] HOFFMANN D, TILGNER A, ⅡNUMA Y, et al. Atmospheric Stability of Levoglucosan:A Detailed Laboratory and Modeling Study[J]. Environmental Science & Technology, 2010, 44(2):694-699. [15] YANG L M, RAY M B, YU L E. Photooxidation of dicarboxylic acids-Part I:Effects of inorganic ions on degradation of azelaic acid[J]. Atmospheric Environment, 2008, 42(5):856-867. [16] VAUGHAN P P, BLOUGH N V. Photochemical formation of hydroxyl radical by constituents of natural waters[J]. Environmental Science & Technology, 1998, 32(19):2947-2953. [17] 王刚,刘国光. 水杨酸在水溶液中的光化学降解研究[D]. 新乡:河南师范大学,2012. WANG G, LIU G G. Photochemical degradation of salicylic acid in aqueous solution[D]. Xinxiang:Henan Normal University, 2012(in Chunese). [18] 程燕,花日茂. 丙草胺在水溶液中的光化学降解研究[D]. 合肥:安徽农业大学,2004. CHENG Y, HUA R M. Photochemical degradation of pretilachlor in aqueous solution[D]. Hefei:Anhui Agricultural University, 2004(in Chunese). [19] MARINONI A, PARAZOLS M, BRIGANTE M, et al. Hydrogen peroxide in natural cloud water:Sources and photoreactivity[J]. Atmospheric Research, 2011, 101(1-2):256-263. [20] 李国亭,朱美亚,汪宁改等. H2O2/UV对抗生素的有效降解过程研究[J]. 河南科技, 2009(8):56-57. LI G T, ZHU M Y, WANG N G, et al. Study on the effective degradation process of antibiotics by H2 [21] 吴彦霖,诸秀芬,赵建夫等. 羟基自由基和水合电子降解对叔丁基酚的研究[J]. 中国环境科学, 2016, 36(8):2323-2328. WU Y L, CHU X F, ZHAO J F, et al. Hydroxyl radical and hydration electron degradation of tert-butyl phenol[J]. Chinese Environmental Science, 2016, 36(8):2323-2328(in Chinese).
[22] 廖洋. 以负载型铁氧化物降解水中邻苯二甲酸酯的研究[D]. 广州:广东工业大学, 2011. LIAO Y. Study on degradation of phthalate esters in water by supported iron oxide[D]. Guangdong:Guangzhou University of Technology, 2011(in Chinese). [23] CAO F, ZHANG S C, KAWAMURA K, et al. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China[J]. Environmental Pollution, 2017, 231:654-662. [24] 李青松,高乃云,马晓雁,等.UV/H2O2工艺降解水中17α-乙炔基雌二醇[J]. 中国环境科学, 2006, 26(5):515-518. LI Q S, GAO N Y, MA X Y, et al. Degradation of 17α-ethynyl estradiol in water by UV/H2O2 process[J]. Chinese Environmental, Science, 2006, 26(5):515-518(in Chinese).
[25] 黎雷,高乃云. 阴离子对UV/H2O2微爆气工艺降解双酚A的影响[J]. 中国环境科学, 2008, 28(3):233-236. LI L, GAO N Y. Effect of anion on degradation of bisphenol A by UV/H2O2 micro-explosion process[J]. Chinese Environmental Science, 2008, 28(3):233-236(in Chinese).
[26] TANG Y, THORN R P, Ⅲ R L M, et al. Kinetics and spectroscopy of the SO42- radical in aqueous solution[J]. Journal of Photochemistry and Photobiology A Chemistry, 1988, 44(3):243-258. [27] MACK J. Photochemistry of nitrite and nitrate in aqueous solution:A review[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1999, 128(1-3):1-13. [28] 展漫军,杨曦,孔令仁. 天然水体中亚硝酸根和硝酸根的光化学研究进展[J]. 环境污染治理技术与设备, 2004, 5(10):14-19. ZHAN M J, YANG X, KONG L R. Progress in photochemistry of nitrite and nitrate in natural waters[J]. Environmental Pollution Control Technology and Equipment, 2004, 5(10):14-19(in Chinese).
[29] JANG M, CZOSCHKE N M, LEE S D, et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions[J]. Science, 2002, 298(5594):814-817. [30] KAVOURAS I I G, MIHALOPOULOS N, STEPHANOU E G. Formation of atmospheric particles from organic acids produced by forests[J]. Nature, 1998, 395(6703):683-686. [31] ZHANG R Y, SUN I, ZHAO J, et al. Atmospheric new particle formation enhanced by organic acids[J]. Science, 2004, 304(5676):1487-1490. [32] CHARBOUILLOT T, GORINI S, VOYARD G, et al. Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase:Formation, fate and reactivity[J]. Atmospheric Environment, 2012, 56:1-8. [33] BOREDDY S K R, MOCHIZUKI T, KAWAMURA K, et al. Homologous series of low molecular weight (C1-C10) monocarboxylic acids, benzoic acid and hydroxyacids in fine-mode (PM2.5) aerosols over the Bay of Bengal:Influence of heterogeneity in air masses and formation pathways[J]. Atmospheric Environment, 2017, 167:170-180.
计量
- 文章访问数: 1346
- HTML全文浏览数: 1346
- PDF下载数: 34
- 施引文献: 0