金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展

李贺希, 陈静飞, 卢聪, 屈秀文, 钱昆, 项丰顺. 金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展[J]. 环境化学, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
引用本文: 李贺希, 陈静飞, 卢聪, 屈秀文, 钱昆, 项丰顺. 金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展[J]. 环境化学, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
LI Hexi, CHEN Jingfei, LU Cong, QU Xiuwen, QIAN Kun, XIANG Fengshun. Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites[J]. Environmental Chemistry, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
Citation: LI Hexi, CHEN Jingfei, LU Cong, QU Xiuwen, QIAN Kun, XIANG Fengshun. Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites[J]. Environmental Chemistry, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809

金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展

    通讯作者: 项丰顺, E-mail: dh18702314613@163.com

Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites

    Corresponding author: XIANG Fengshun, dh18702314613@163.com
  • 摘要: 一维纳米TiO2材料和同时具有分子特性与部分纳米颗粒特性的金属纳米团簇(NCs)是两种新型纳米材料,近年来受到学界广泛关注,二者在多个领域的应用发展潜力巨大.金属纳米团簇-二氧化钛纳米管阵列材料(MNCs-TNTAs)是一种新型复合材料,通过在二氧化钛纳米管表面上均匀分布金属纳米团簇,使得二者形成协同效应,光电和光催化等活性显著增强.但至今关于此材料还没有系统报道,本文综述了MNCs-TNTAs的材料结构、合成方法及相关应用.MNCs的加入使得TNTA吸收光谱红移,并促进光生载流子的分离,同时MNCs还可充当辅助催化剂.合成关键步骤在于二者的结合,方法有静电自组装法和胶体沉积法,其中胶体沉积法生产的材料更稳定.目前,尚有MNCs-TNTA在光电化学(PEC裂解水)、光催化降解有机污染物、还原硝基化合物等方面的应用.未来可以通过改善结合方法、纳米团簇配体种类等手段提升其稳定性,并拓展其在光催化氧化,太阳能电池等方面的应用.
  • 加载中
  • [1] SHUKLA V, RAVAL B, MISHRA S, et al. Role of nanocomposites in future nanoelectronic information storage devices[M]//Nanoelectronics, India:Elsevier, 2019:399-431.
    [2] ZHAO Q, LI M, CHU J, et al. Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange[J]. Applied Surface Science, 2009, 255(6):3773-3778.
    [3] KONTOS A G, KATSANAKI A, MAGGOS T, et al. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes[J]. Chemical Physics Letters, 2010, 490:58-62.
    [4] FU N, LI X, LIU Y, et al. Low Temperature transfer of well-tailored TiO2 nanotube array membrane for efficient plastic dye-sensitized solar cells[J]. Journal of Power Sources, 2017, 343:47-53.
    [5] PERILLO P M, RODR'GUEZ D F. The gas sensing properties at room temperature of TiO2 nanotubes by anodization[J]. Sensors and Actuators B:Chemical, 2012, 171/172:639-643.
    [6] SIMI V S, SATISH A, KORRAPATI P S, et al. In-vitro biocompatibility and corrosion resistance of electrochemically assembled PPy/TNTA hybrid material for biomedical applications[J]. Applied Surface Science, 2018, 445:320-334.
    [7] GUNPUTH U F, LE H, HANDY R D, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Materials Science and Engineering:C, 2018, 91:638-644.
    [8] NOORIMOTLAGH Z, KAZEMINEZHAD I, JAAFARZADEH N, et al. Improved performance of immobilized TiO2 under visible light for the commercial Surfactant Degradation:Role of carbon doped TiO2 and anatase/rutile ratio[J]. Catalysis Today, 2020, 348:277-289.
    [9] BAI B, CHEN Q, ZHAO X, et al. Enhancing electroreduction of CO2 to formate of Pd catalysts loaded on TiO2 nanotubes arrays by N, B-support modification[J]. Chemistry Select, 2019, 4(29):8626-8633.
    [10] LAI Y K, HUANG J Y, ZHANG H F, et al. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources[J]. Journal of Hazardous Materials, 2010, 184:855-863.
    [11] SANG L, GE H, SUN B. Probing plasmonic Ag nanoparticles on TiO2 nanotube arrays electrode for efficient solar water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(30):15787-15794.
    [12] BANERJEE S, MOHAPATRA S K, DAS P P, et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS[J]. Chemistry of Materials, 2008, 20(21):6784-6791.
    [13] YANG H, WANG Y, YAN J, et al. Structural evolution of atomically precise thiolated bimetallic[Aun12+Cu32(SR)n30+]4-(n=0, 2, 4, 6) nanoclusters[J]. Journal of the American Chemical Society, 2014, 136(20):7197-7200.
    [14] NASARUDDIN R R, CHEN T, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters[J]. Coordination Chemistry Reviews, 2018, 368:60-79.
    [15] XIAO F X, MIAO J, WANG H Y, et al. Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications[J]. Journal of Materials Chemistry A, 2013, 1(39):12229-12238.
    [16] LE L, WU Y, ZHOU Z, et al. Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 351:78-86.
    [17] HOSSAIN M F, BISWAS S, ZHANG Z H, et al. Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2011, 217(1):68-75.
    [18] QIAN H, ZHU M, WU Z, et al. Quantum sized gold nanoclusters with atomic precision[J]. Accounts of Chemical Research, 2012, 45(9):1470-1479.
    [19] HIGAKI T, ZENG C, CHEN Y, et al. Controlling the crystalline phases (FCC, HCP and BCC) of thiolate-protected gold nanoclusters by ligand-based strategies[J]. Cryst Eng Comm, 2016, 18(37):6979-6986.
    [20] HIGAKI T, ZHOU M, LAMBRIGHT K J, et al. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance[J]. Journal of the American Chemical Society, 2018, 140(17):5691-5695.
    [21] ROUSSEAU R, GLEZAKOU V A, SELLONI A. Theoretical insights into the surface physics and chemistry of redox-active oxides[J]. Nature Reviews Materials, 2020, 5(6):460-475.
    [22] KOIVISTO J, SALORINNE K, MUSTALAHTI S, et al. Vibrational perturbations and ligand-layer coupling in a single crystal of Au144(SC2H4Ph) 60 nanocluster[J]. The Journal of Physical Chemistry Letters, 2014, 5(2):387-392.
    [23] NEGISHI Y, SAKAMOTO C, OHYAMA T, et al. Synthesis and the origin of the stability of thiolate-protected Au130 and Au187 clusters[J]. The Journal of Physical Chemistry Letters, 2012, 3(12):1624-1628.
    [24] TIAN S, LI Y Z, LI M B, et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography[J]. Nature Communications, 2015, 6(1):1-7.
    [25] LIU X, XU W W, HUANG X, et al. De novo design of Au36(SR)24 nanoclusters.[J]. Nature Communications, 2020, 11(1):3349-3349.
    [26] HIGAKI T, LI Q, ZHOU M, et al. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities[J]. Accounts of Chemical Research, 2018, 51(11):2764-2773.
    [27] JIN R. Atomically precise metal nanoclusters:Stable sizes and optical properties[J]. Nanoscale, 2015, 7(5):1549-1565.
    [28] ZHANG L, WANG E M,etal Nanoclusters:New fluorescent probes for sensors and bioimaging[J]. Nano Today, 2014, 9(1):132-157.
    [29] PELAYO J J, VALENCIA I, GARC A A P, et al. Chirality in bare and ligand-protected metal nanoclusters[J]. Advances in Physics:X, 2018, 3(1):1509727.
    [30] FARRAG M, TSCHURL M, HEIZ U. Chiral gold and silver nanoclusters:Preparation, size selection, and chiroptical properties[J]. Chemistry of Materials, 2013, 25(6):862-870.
    [31] FU X, CHEN B, LI C, et al. Direct visualization of photomorphic reaction dynamics of plasmonic nanoparticles in liquid by four-dimensional electron microscopy[J]. Journal of Physical Chemistry Letters, 2018, 9(14):4045-4052.
    [32] YAU S H, VARNAVSKI O, GOODSON T. An ultrafast look at Au nanoclusters[J]. Accounts of Chemical Research, 2013, 46(7):1506-1516.
    [33] YE M, GONG J, LAI Y, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays[J]. Journal of the American Chemical Society, 2012, 134(38):15720-15723.
    [34] GE M Z, CAO C Y, HUANG J Y, et al. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays:A review[J]. Nanotechnology Reviews, 2016, 5(1):75-112
    [35] KONDO J N, DOMEN K. Crystallization of mesoporous metal oxides[J]. Chemistry of Materials, 2008, 20(3):835-847.
    [36] MARIEN C B D, COTTINEAU T, ROBERT D, et al. TiO2 Nanotube Arrays:Influence of tube length on the photocatalytic degradation of paraquat[J]. Applied Catalysis B:Environmental, 2016, 194:1-6.
    [37] MOR G K, VARGHESE O K, PAULOSE M, et al. Fabrication of tapered, conical-shaped titania nanotubes[J]. Journal of Materials Research, 2003, 18(11):2588-2593.
    [38] ALSAWAT M, ALTALHI T, SHAPTER J G, et al. Influence of dimensions, inter-distance and crystallinity of titania nanotubes (TNTs) on their photocatalytic activity[J]. Catal Sci Technol, 2014, 4(7):2091-2098.
    [39] TIAN Z R, VOIGT J A, LIU J, et al. Large oriented arrays and continuous films of TiO2-based nanotubes[J]. Journal of the American Chemical Society, 2003, 125(41):12384-12385.
    [40] GROSS P A, PRONKIN S N, COTTINEAU T, et al. Effect of deposition of Ag nanoparticles on photoelectrocatalytic activity of vertically aligned TiO2 nanotubes[J]. Catalysis Today, 2012, 189(1):93-100.
    [41] LI G, JIN R. Atomically precise gold nanoclusters as new model catalysts[J]. Accounts of Chemical Research, 2013, 46(8):1749-1758.
    [42] CAO M, PANG R, WANG Q Y, et al. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant[J]. Journal of the American Chemical Society, 2019, 141(37):14505-14509.
    [43] WU T, WEI X, YANG X, et al. Room temperature hydrogen sensitivities of a new type hydrogen sensor with Pd nanoclusters/TiO2 nanotubes composite structure[J]. Scientia Sinica Technologica, 2017, 47(4):418-422.
    [44] GAO Y, LI X, SHI X, et al. Structural, electronic, and optical absorption properties of TiO2 nanotube adsorbed with Cun clusters[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(8):1519-1525.
    [45] ZHU B, GUO Q, HUANG X, et al. Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles[J]. Journal of Molecular Catalysis A:Chemical, 2006, 249(1/2):211-217.
    [46] FAN F R, LIU D Y, WU Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals:From gold nano-octahedra to palladium and silver nanocubes[J]. Journal of the American Chemical Society, 2008, 130(22):6949-6950.
    [47] UDAYA BHASKARA RAO T, PRADEEP T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis[J]. Angewandte Chemie International Edition, 2010, 49(23):3925-3929.
    [48] WU Z, MACDONALD M A, CHEN J, et al. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters[J]. Journal of the American Chemical Society, 2011, 133(25):9670-9673.
    [49] CROISSANT J G, ZHANG D, ALSAIARI S, et al. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging[J]. Journal of Controlled Release, 2016, 229:183-191.
    [50] ZENG C, QIAN H, LI T, et al. Total Structure and electronic properties of the gold nanocrystal Au36(SR)24[J]. Angewandte Chemie-International Edition, 2012, 51(52):13114-13118.
    [51] HIGAKI T, LIU C, ZENG C, et al. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy[J]. Angewandte Chemie International Edition, 2016, 55(23):6694-6697.
    [52] LI G, WANG K, WANG Q, et al. Formation of icosahedral and hcp structures in bimetallic Co-Cu clusters during the freezing processes[J]. Materials Letters, 2012, 88:126-128.
    [53] QIAN H, ECKENHOFF W T, ZHU Y, et al. Total structure determination of thiolate-protected Au38 nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(24):8280-8281.
    [54] SHEN X T, MA X L, NI Q L, et al.[Ag15(N-Triphos)4(Cl4)](NO3)3:A stable Ag-P superatom with eight electrons (N-Triphos=tris((diphenylphosphino)methyl)amine[J]. Nanoscale, 2018, 10(2):515-519.
    [55] LIU C, LI T, LI G, et al. Observation of body-centered cubic gold nanocluster[J]. Angewandte Chemie International Edition, 2015, 54(34):9826-9829.
    [56] MAITY S, BAIN D, PATRA A. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications[J]. Nanoscale, 2019, 11(47):22685-22723.
    [57] GOSWAMI N, YAO Q, CHEN T, et al. Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters[J]. Coordination Chemistry Reviews, 2016, 329:1-15.
    [58] WANG Z, GUPTA R K, LUO G G, et al. Recent progress in inorganic anions templated silver nanoclusters:Synthesis, structures and properties[J]. The Chemical Record, 2019, 20(5):389-402.
    [59] ZHOU S, LI Y, WANG F, et al. One step synthesis of silane-capped copper clusters as a sensitive optical probe and efficient catalyst for reversible color switching[J]. RSC Advances, 2016, 6(45):38897-38905.
    [60] DHAYAL R S, VAN ZYL W E, LIU C W. Polyhydrido copper clusters:Synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion[J]. Accounts of Chemical Research, 2016, 49(1):86-95.
    [61] HOSSAIN S, NIIHORI Y, NAIR L V, et al. Alloy clusters:Precise synthesis and mixing effects[J]. Accounts of Chemical Research, 2018, 51(12):3114-3124.
    [62] HOSSAIN S, IMAI Y, NEGISHI Y. Precise synthesis of platinum and alloy clusters and elucidation of their structures[C]//AIP Conference Proceedings. AIP Publishing LLC, 2019:030018.
    [63] XU C, ZENG Y, RUI X, et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance[J]. ACS Nano, 2012, 6(6):4713-4721.
    [64] FENG J, CHEN Y, HAN Y, et al. pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission[J]. ACS Omega, 2017, 2(12):9109-9117.
    [65] YU Y, LUO Z, YU Y, et al. Observation of cluster size growth in CO-directed synthesis of Au25(SR) 18 nanoclusters[J]. ACS Nano, 2012, 6(9):7920-7927.
    [66] CHEN T, YAO Q, YUAN X, et al. Heating or cooling:Temperature effects on the synthesis of atomically precise gold nanoclusters[J]. The Journal of Physical Chemistry C, 2017, 121(20):10743-10751.
    [67] NEGISHI Y, IWAI T, IDE M. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping[J]. Chemical Communications, 2010, 46(26):4713-4715.
    [68] DOU X, YUAN X, YAO Q, et al. Facile synthesis of water-soluble Au25-x Agx nanoclusters protected by mono-and bi-thiolate ligands[J]. Chemical Communications, 2014, 50(56):7459-7462.
    [69] OH E, DELEHANTY J B, FIELD L D, et al. Synthesis and characterization of PEGylated luminescent gold nanoclusters doped with silver and other metals[J]. Chemistry of Materials, 2016, 28(23):8676-8688.
    [70] FU N, DUAN Y, LU W, et al. Synthesis and characterization of PEGylated luminescent gold nanoclusters doped with silver and other metals[J]. Journal of Materials Chemistry A, 2019, 7(18):11520-11529.
    [71] DHANALAKSHMI L, UDAYABHASKARARAO T, PRADEEP T. Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters[J]. Chemical Communications, 2012, 48(6):859-861.
    [72] YAO Q, YUAN X, FUNG V, et al. Understanding seed-mediated growth of gold nanoclusters at molecular level[J]. Nature Communications, 2017, 8(1):1-11.
    [73] YANG S, WANG S, JIN S, et al. A metal exchange method for thiolate-protected tri-metal M1AgxAu24-x(SR)180(M=Cd/Hg) nanoclusters[J]. Nanoscale, 2015, 7(22):10005-10007.
    [74] WANG S, LI Q, KANG X, et al. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange[J]. Accounts of Chemical Research, 2018, 51(11):2784-2792.
    [75] KANG X, ZHU M. Transformation of atomically precise nanoclusters by ligand-exchange[J]. Chemistry of Materials, 2019, 31(24):9939-9969.
    [76] HEINECKE C L, NI T W, MALOLA S, et al. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters[J]. Journal of the American Chemical Society, 2012, 134(32):13316-13322.
    [77] BAGHDASARYAN A. Designed synthesis and surface modification of metal clusters:From fundamentals to applications[D]. Canton Geneva, Switzerland, 2020.
    [78] KRISHNADAS K R, GHOSH A, BAKSI A, et al. Intercluster Reactions between Au25(SR)18 and Ag44(SR)30[J]. Journal of the American Chemical Society, 2016, 138(1):140-148.
    [79] KRISHNADAS K R, BAKSI A, GHOSH A, et al. Interparticle reactions:An emerging direction in nanomaterials chemistry[J]. Accounts of Chemical Research, 2017, 50(8):1988-1996.
    [80] BHAT S, BAKSI A, MUDEDLA S K, et al. Au22Ir3(PET)18:An unusual alloy cluster through intercluster reaction[J]. The Journal of Physical Chemistry Letters, 2017, 8(13):2787-2793.
    [81] LEE J, HONG S H, JHO J Y. A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method[J]. Sensors and Actuators B:Chemical, 2011, 160(1):1494-1498.
    [82] BAVYKIN D V, FRIEDRICH J M, WALSH F C. Protonated titanates and TiO2 nanostructured materials:Synthesis, properties, and applications[J]. Advanced Materials, 2006, 18(21):2807-2824.
    [83] LAI Y, GAO X, ZHUANG H, et al. Designing superhydrophobic porous nanostructures with tunable water adhesion[J]. Advanced Materials, 2009, 21(37):3799-3803.
    [84] ROY P, DAS C, LEE K, et al. Oxide nanotubes on Ti-Ru alloys:Strongly enhanced and stable photoelectrochemical activity for water splitting[J]. Journal of the American Chemical Society, 2011, 133(15):5629-5631.
    [85] HUANG J Y, ZHANG K Q, LAI Y K. Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis:A review[J]. International Journal of Photoenergy, 2013(1):1-19.
    [86] QIN G, ZHANG J, WANG C. Constructing robust TiO2-V2O5/C nanostructures decorated by multi-walled carbon nanotubes for high performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 635:158-162.
    [87] PARAYIL S K, RAZZAQ A, PARK S M, et al. Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes[J]. Applied Catalysis A:General, 2015, 498:205-213.
    [88] CIRAK B B, KARADENIZ S M, KILINC T, et al. Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages[J]. Vacuum, 2017, 144:183-189.
    [89] SEONG W M, KIM D H, PARK I J, et al. Roughness of Ti substrates for control of the preferred orientation of TiO2 nanotube arrays as a new orientation factor[J]. The Journal of Physical Chemistry C, 2015, 119(23):13297-13305.
    [90] LI H, LAI Y, HUANG J, et al. Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO2 nanostructured surfaces[J]. Journal of Materials Chemistry B, 2015, 3(3):342-347.
    [91] GONG D, GRIMES C A, VARGHESE O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12):3331-3334.
    [92] GE M Z, LI S H, HUANG J Y, et al. TiO2 nanotube arrays loaded with reduced graphene oxide films:Facile hybridization and promising photocatalytic application[J]. Journal of Materials Chemistry A, 2015, 3(7):3491-3499.
    [93] YU D, ZHU X, XU Z, et al. Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate[J]. ACS Applied Materials & Interfaces, 2014, 6(11):8001-8005.
    [94] VARGHESE O K, GONG D, PAULOSE M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays[J]. Journal of Materials Research, 2003, 18(1):156-165.
    [95] GHICOV A, TSUCHIYA H, MACAK J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochemistry Communications, 2005, 7(5):505-509.
    [96] MACAK J M, TSUCHIYA H, SCHMUKI P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44(14):2100-2102.
    [97] ATYAOUI A, CACHET H, SUTTER E M M, et al. Effect of the anodization voltage on the dimensions and photoactivity of titania nanotubes arrays[J]. Surface and Interface Analysis, 2013, 45(11/12):1751-1759.
    [98] SUN Y, YAN K P. Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell[J]. International Journal of Hydrogen Energy, 2014, 39(22):11368-11375.
    [99] PERATHONER S, PASSALACQUA R, CENTI G, et al. Photoactive titania nanostructured thin films:Synthesis and characteristics of ordered helical nanocoil array[J]. Catalysis Today, 2007, 122(1/2):3-13.
    [100] ZHAO J, WANG X, CHEN R, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Communications, 2005, 134(10):705-710.
    [101] ALLAM N K, GRIMES C A. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays[J]. Solar Energy Materials and Solar Cells, 2008, 92(11):1468-1475.
    [102] MOR G K, SHANKAR K, PAULOSE M, et al. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano letters, 2005, 5(1):191-195.
    [103] XIAO F X, HUNG S F, MIAO J, et al. Metal-cluster-decorated TiO2 nanotube arrays:A composite heterostructure toward versatile photocatalytic and photoelectrochemical applications[J]. Small, 2015, 11(5):554-567.
    [104] XIAO F X, ZENG Z, LIU B. Bridging the Gap:Electron relay and plasmonic sensitization of metal nanocrystals for metal clusters[J]. Journal of the American Chemical Society, 2015, 137(33):10735-10744.
    [105] ZENG Z, LI Y B, CHEN S, et al. Insight into the charge transport correlation in Aux clusters and graphene quantum dots deposited on TiO2 nanotubes for photoelectrochemical oxygen evolution[J]. Journal of Materials Chemistry A, 2018, 6(24):11154-11162.
    [106] XIAO F X, ZENG Z, HSU S H, et al. Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis[J]. Acs Applied Materials & Interfaces, 2015, 7(51):28105-28109.
    [107] WANG Y, LIU X, KOVALENKO S A, et al. Atomically precise bimetallic nanoclusters as photosensitizers in photoelectrochemical cells[J]. Chemistry-A European Journal, 2019, 25(18):4814-4820.
    [108] 刘艳彪. 高效金团簇敏化TiO2纳米管阵列电极光电催化降解抗生素类新兴污染物[C]//2017全国光催化材料及创新应用学术研讨会摘要集,2017. LIU Y B. High-efficiency gold cluster-sensitized TiO2 nanotube array electrode photocatalytically degrades emerging antibiotic pollutants[C]//2017 National Photocatalytic Materials and Innovative Applications Symposium Summary Collection,2017

    (in Chinese).

    [109] ROGUSKA A, KUDELSKI A, PISAREK M, et al. Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate[J]. Vibrational Spectroscopy, 2011, 55(1):38-43.
    [110] ROGUSKA A, KUDELSKI A, PISAREK M, et al. Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate[J]. Applied Surface Science, 2011, 257(19):8182-8189.
    [111] CHAKRABORTY A, DAS A, RAHA S, et al. Size-Dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal[J]. Journal of Photochemistry and Photobiology B:Biology, 2020, 203:111778.
    [112] SENGUPTA R N, D'APUZZO F, BARCELO S. Bacterial detection via surface-enhanced raman spectroscopy (SERS)[J]. The FASEB Journal, 2020, 34(S1), doi.org/10.1096/fasebj.2020.34.s1.09280.
    [113] BOTTA R, EIAMCHAI P, HORPRATHUM M, et al. 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments[J]. Sensors and Actuators B:Chemical, 2020, 304:127327.
  • 加载中
计量
  • 文章访问数:  2798
  • HTML全文浏览数:  2798
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-06-28
李贺希, 陈静飞, 卢聪, 屈秀文, 钱昆, 项丰顺. 金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展[J]. 环境化学, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
引用本文: 李贺希, 陈静飞, 卢聪, 屈秀文, 钱昆, 项丰顺. 金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展[J]. 环境化学, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
LI Hexi, CHEN Jingfei, LU Cong, QU Xiuwen, QIAN Kun, XIANG Fengshun. Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites[J]. Environmental Chemistry, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809
Citation: LI Hexi, CHEN Jingfei, LU Cong, QU Xiuwen, QIAN Kun, XIANG Fengshun. Research progress of metal nanoclusters titanium dioxide nanotube array(MNCs-TNTAs) composites[J]. Environmental Chemistry, 2020, (11): 3120-3138. doi: 10.7524/j.issn.0254-6108.2020062809

金属纳米团簇-二氧化钛纳米管阵列(MNCs-TNTAs)复合材料研究进展

    通讯作者: 项丰顺, E-mail: dh18702314613@163.com
  • 1. 中国人民解放军陆军防化学院, 北京, 102205;
  • 2. 中国人民解放军32169部队, 林芝, 860000

摘要: 一维纳米TiO2材料和同时具有分子特性与部分纳米颗粒特性的金属纳米团簇(NCs)是两种新型纳米材料,近年来受到学界广泛关注,二者在多个领域的应用发展潜力巨大.金属纳米团簇-二氧化钛纳米管阵列材料(MNCs-TNTAs)是一种新型复合材料,通过在二氧化钛纳米管表面上均匀分布金属纳米团簇,使得二者形成协同效应,光电和光催化等活性显著增强.但至今关于此材料还没有系统报道,本文综述了MNCs-TNTAs的材料结构、合成方法及相关应用.MNCs的加入使得TNTA吸收光谱红移,并促进光生载流子的分离,同时MNCs还可充当辅助催化剂.合成关键步骤在于二者的结合,方法有静电自组装法和胶体沉积法,其中胶体沉积法生产的材料更稳定.目前,尚有MNCs-TNTA在光电化学(PEC裂解水)、光催化降解有机污染物、还原硝基化合物等方面的应用.未来可以通过改善结合方法、纳米团簇配体种类等手段提升其稳定性,并拓展其在光催化氧化,太阳能电池等方面的应用.

English Abstract

参考文献 (113)

返回顶部

目录

/

返回文章
返回