原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展

付志琪, 李振宇, 魏锦博, 汪畅, 程波, 曹梦西, 梁勇. 原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001
引用本文: 付志琪, 李振宇, 魏锦博, 汪畅, 程波, 曹梦西, 梁勇. 原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001
Fu Zhiqi, Li Zhenyu, Wei Jinbo, Wang Chang, Cheng Bo, Cao Mengxi, Liang Yong. Developmental Regulation of Primordial Germ Cells and Progress of Toxic Effects Study of Environmental Estrogens on PGCs[J]. Asian journal of ecotoxicology, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001
Citation: Fu Zhiqi, Li Zhenyu, Wei Jinbo, Wang Chang, Cheng Bo, Cao Mengxi, Liang Yong. Developmental Regulation of Primordial Germ Cells and Progress of Toxic Effects Study of Environmental Estrogens on PGCs[J]. Asian journal of ecotoxicology, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001

原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展

    作者简介: 付志琪(1999-),男,硕士研究生,研究方向为环境毒理学,E-mail:949266717@qq.com
    通讯作者: 曹梦西,E-mail:caomx@jhun.edu.cn; 
  • 基金项目:

    国家自然科学基金青年项目(21806058)

  • 中图分类号: X171.5

Developmental Regulation of Primordial Germ Cells and Progress of Toxic Effects Study of Environmental Estrogens on PGCs

    Corresponding author: Cao Mengxi, caomx@jhun.edu.cn
  • Fund Project:
  • 摘要: 随着环境雌激素(environmental estrogens, EEs)在人体样本尤其是孕早期人体样本中频繁被检出,对于EEs的生殖健康风险研究开始关注其对原始生殖细胞(primordial germ cells, PGCs)发生和迁移的影响。PGCs是生殖细胞的前体细胞,经过特化、迁移、分化后生成精子或卵子,作为高等生物体生命延续的载体,其遗传稳定性对人体生殖健康至关重要。本文以小鼠及斑马鱼为例总结了PGCs发育过程及其关键调控因子,讨论了雌激素在PGCs发育中的作用及其调控方式,在此基础上综述了EEs对PGCs的毒性效应及其分子机制的研究进展。了解EEs对PGCs的毒性效应及分子机制研究进展,将为EEs的人体生殖健康风险评估提供更为精准的科学依据。
  • 加载中
  • Gurunath S, Pandian Z, Anderson R A, et al. Defining infertility: A systematic review of prevalence studies[J]. Human Reproduction Update, 2011, 17(5): 575-588
    Mascarenhas M N, Flaxman S R, Boerma T, et al. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys[J]. PLoS Medicine, 2012, 9(12): e1001356
    Keiding N, Ali M M, Eriksson F, et al. The use of time to pregnancy for estimating and monitoring human fecundity from demographic and health surveys[J]. Epidemiology (Cambridge, Mass), 2021, 32(1): 27-35
    Ma Y M, He X, Qi K Y, et al. Effects of environmental contaminants on fertility and reproductive health[J]. Journal of Environmental Sciences (China), 2019, 77: 210-217
    Doitsidou M, Reichman-Fried M, Stebler J, et al. Guidance of primordial germ cell migration by the chemokine SDF-1[J]. Cell, 2002, 111(5): 647-659
    Truszkowski L, Batur D, Long H Y, et al. Primordial germ cells adjust their protrusion type while migrating in different tissue contexts in vivo[J]. Development, 2023, 150(2): dev200603
    Kloc M, Bilinski S, Etkin L D. The balbiani body and germ cell determinants: 150 years later[J]. Current Topics in Developmental Biology, 2004, 59: 1-36
    Beer R L, Draper B W. nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary[J]. Developmental Biology, 2013, 374(2): 308-318
    Gavis E R, Lunsford L, Bergsten S E, et al. A conserved 90 nucleotide element mediates translational repression of nanos RNA[J]. Development, 1996, 122(9): 2791-2800
    Tomancak P, Guichet A, Zavorszky P, et al. Oocyte polarity depends on regulation of gurken by Vasa[J]. Development, 1998, 125(9): 1723-1732
    Wang Z, Lin H F. Nanos maintains germline stem cell self-renewal by preventing differentiation[J]. Science, 2004, 303(5666): 2016-2019
    Takeda Y, Mishima Y, Fujiwara T, et al. DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish[J]. PLoS One, 2009, 4(10): e7513
    Kedde M, Strasser M J, Boldajipour B, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA[J]. Cell, 2007, 131(7): 1273-1286
    Ketting R F. A dead end for microRNAs[J]. Cell, 2007, 131(7): 1226-1227
    Liu W Y, Collodi P. Zebrafish dead end possesses ATPase activity that is required for primordial germ cell development[J]. FASEB Journal, 2010, 24(8): 2641-2650
    Houwing S, Kamminga L M, Berezikov E, et al. A role for piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish[J]. Cell, 2007, 129(1): 69-82
    Kleppe L, Wargelius A, Johnsen H, et al. Gonad specific genes in Atlantic salmon (Salmon salar L.): Characterization of tdrd7-2, dazl-2, piwil1 and tdrd1 genes[J]. Gene, 2015, 560(2): 217-225
    Bontems F, Stein A, Marlow F, et al. Bucky ball organizes germ plasm assembly in zebrafish[J]. Current Biology, 2009, 19(5): 414-422
    Roovers E F, Kaaij L J T, Redl S, et al. Tdrd6a regulates the aggregation of buc into functional subcellular compartments that drive germ cell specification[J]. Developmental Cell, 2018, 46(3): 285-301.e9
    D’Orazio F M, Balwierz P J, González A J, et al. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization[J]. Developmental Cell, 2021, 56(5): 641-656.e5
    Forbes M M, Rothhämel S, Jenny A, et al. Retraction notice to: Maternal dazap2 regulates germ granules by counteracting dynein in zebrafish primordial germ cells[J]. Cell Reports, 2016, 15(4): 909
    Wei K H, Liu I H. Heparan sulfate glycosaminoglycans modulate migration and survival in zebrafish primordial germ cells[J]. Theriogenology, 2014, 81(9): 1275-1285.e1-2
    Nair S, Marlow F, Abrams E, et al. The chromosomal passenger protein birc5b organizes microfilaments and germ plasm in the zebrafish embryo[J]. PLoS Genetics, 2013, 9(4): e1003448
    Wang X S, Zhu J W, Wang H P, et al. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors[J]. Nature Communications, 2023, 14(1): 7918
    Marlow F. Primordial germ cell specification and migration[J]. F1000Research, 2015, 4: F1000FacultyRev-F1000Faculty1462
    Kurimoto K, Yabuta Y, Ohinata Y, et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice[J]. Genes & Development, 2008, 22(12): 1617-1635
    Vincent S D, Dunn N R, Sciammas R, et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse[J]. Development, 2005, 132(6): 1315-1325
    Yamaji M, Seki Y, Kurimoto K, et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice[J]. Nature Genetics, 2008, 40(8): 1016-1022
    Ohinata Y, Payer B, O’Carroll D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice[J]. Nature, 2005, 436(7048): 207-213
    Bortvin A, Goodheart M, Liao M, et al. Dppa3/Pgc7/Stella is a maternal factor and is not required for germ cell specification in mice[J]. BMC Developmental Biology, 2004, 4: 2
    Ohinata Y, Ohta H, Shigeta M, et al. A signaling principle for the specification of the germ cell lineage in mice[J]. Cell, 2009, 137(3): 571-584
    王垒. 原始生殖细胞发育调控基因的筛选与功能探究[D]. 上海: 华东师范大学, 2022: 6-9 Wang L. Identification and characterization of candidate regulators for primordial germ cell development[D]. Shanghai: East China Normal University, 2022: 6

    -9(in Chinese)

    Di Carlo A, De Felici M. A role for E-cadherin in mouse primordial germ cell development[J]. Developmental Biology, 2000, 226(2): 209-219
    Piprek R P, Kloc M, Mizia P, et al. The central role of cadherins in gonad development, reproduction, and fertility[J]. International Journal of Molecular Sciences, 2020, 21(21): 8264
    Meighan C M, Schwarzbauer J E. Temporal and spatial regulation of integrins during development[J]. Current Opinion in Cell Biology, 2008, 20(5): 520-524
    Alvarez-Buylla A, Merchant-Larios H. Mouse primordial germ cells use fibronectin as a substrate for migration[J]. Experimental Cell Research, 1986, 165(2): 362-368
    Okamura D, Kimura T, Nakano T, et al. Cadherin-mediated cell interaction regulates germ cell determination in mice[J]. Development, 2003, 130(26): 6423-6430
    Knaut H, Werz C, Geisler R, et al. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor[J]. Nature, 2003, 421(6920): 279-282
    Blaser H, Eisenbeiss S, Neumann M, et al. Transition from non-motile behaviour to directed migration during early PGC development in zebrafish[J]. Journal of Cell Science, 2005, 118(Pt 17): 4027-4038
    陶彬彬, 胡炜. 鱼类原始生殖细胞发育与生殖操作技术研究进展[J]. 水产学报, 2023, 47(1): 94-106

    Tao B B, Hu W. Research progress on primordial germ cell development and reproductive manipulation techniques of fish[J]. Journal of Fisheries of China, 2023, 47(1): 94-106(in Chinese)

    Goudarzi M, Banisch T U, Mobin M B, et al. Identification and regulation of a molecular module for bleb-based cell motility[J]. Developmental Cell, 2012, 23(1): 210-218
    Kardash E, Reichman-Fried M, Maître J L, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo[J]. Nature Cell Biology, 2010, 12(1): 47-53
    Blaser H, Reichman-Fried M, Castanon I, et al. Migration of zebrafish primordial germ cells: A role for myosin contraction and cytoplasmic flow[J]. Developmental Cell, 2006, 11(5): 613-627
    Goudarzi M, Tarbashevich K, Mildner K, et al. Bleb expansion in migrating cells depends on supply of membrane from cell surface invaginations[J]. Developmental Cell, 2017, 43(5): 577-587.e5
    Weidinger G, Stebler J, Slanchev K, et al. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival[J]. Current Biology, 2003, 13(16): 1429-1434
    Bendel-Stenzel M R, Gomperts M, Anderson R, et al. The role of cadherins during primordial germ cell migration and early gonad formation in the mouse[J]. Mechanisms of Development, 2000, 91(1/2): 143-152
    Anderson R, Fässler R, Georges-Labouesse E, et al. Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads[J]. Development, 1999, 126(8): 1655-1664
    Mauduit C, Hamamah S, Benahmed M. Stem cell factor/c-kit system in spermatogenesis[J]. Human Reproduction Update, 1999, 5(5): 535-545
    Payne J L, Wagner A. The causes of evolvability and their evolution[J]. Nature Reviews Genetics, 2019, 20(1): 24-38
    Yamaguchi S, Kurimoto K, Yabuta Y, et al. Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells[J]. Development, 2009, 136(23): 4011-4020
    Cook M S, Coveney D, Batchvarov I, et al. BAX-mediated cell death affects early germ cell loss and incidence of testicular teratomas in Dnd1(Ter/Ter) mice[J]. Developmental Biology, 2009, 328(2): 377-383
    Okamura D, Tokitake Y, Niwa H, et al. Requirement of Oct3/4 function for germ cell specification[J]. Developmental Biology, 2008, 317(2): 576-584
    Ewen K A, Koopman P. Mouse germ cell development: From specification to sex determination[J]. Molecular and Cellular Endocrinology, 2010, 323(1): 76-93
    Lecaudey V, Cakan-Akdogan G, Norton W H, et al. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium[J]. Development, 2008, 135(16): 2695-2705
    Gamba L, Cubedo N, Ghysen A, et al. Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6358-6363
    Wei Z H, Hong Q, Ding Z J, et al. cxcl12a plays an essential role in pharyngeal cartilage development[J]. Frontiers in Cell and Developmental Biology, 2023, 11: 1243265
    Hu J Y, Sun S Y, Guo M, et al. Use of antagonists and morpholinos in loss-of-function analyses: Estrogen receptor ESR2a mediates the effects of 17alpha-ethinylestradiol on primordial germ cell distribution in zebrafish[J]. Reproductive Biology and Endocrinology, 2014, 12: 40
    Chakraborty T, Mohapatra S, Zhou L Y, et al. Estrogen receptor β2 oversees germ cell maintenance and gonadal sex differentiation in medaka, Oryzias latipes[J]. Stem Cell Reports, 2019, 13(2): 419-433
    Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action[J]. Physiological Reviews, 2001, 81(4): 1535-1565
    la Sala G, Farini D, De Felici M. Rapid estrogen signalling in mouse primordial germ cells[J]. Experimental Cell Research, 2010, 316(10): 1716-1727
    侯苹, 张娴文, 白洁. 环境雌激素的生殖毒性的分子机理研究进展[J]. 生命科学, 2013, 25(11): 1121-1125

    Hou P, Zhang X W, Bai J. Progress in molecular mechanisms on reproductive toxicity of environmental estrogens[J]. Chinese Bulletin of Life Sciences, 2013, 25(11): 1121-1125(in Chinese)

    Nagabhushana A, Mishra R K. Finding clues to the riddle of sex determination in zebrafish[J]. Journal of Biosciences, 2016, 41(1): 145-155
    Vandenberg L N, Ehrlich S, Belcher S M, et al. Low dose effects of bisphenol A: An integrated review of in vitro, laboratory animal, and epidemiology studies[J]. Endocrine Disruptors, 2013, 1(1): e26490
    Naderi M, Wong M Y L, Gholami F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014, 148: 195-203
    王玉柱, 杨威, 胡晶莹, 等. 邻苯二甲酸二丁酯对F1代测交斑马鱼原始生殖细胞迁移和精巢毒性研究[J]. 毒理学杂志, 2019, 33(4): 283-288
    Hu Y, Ma X, Liu R J, et al. 2,4-dichlorophenol increases primordial germ cell numbers via ESR2a-dependent pathway in zebrafish larvae[J]. Environmental Science & Technology, 2022, 56(19): 13878-13887
    Ooi S K T, Jiang H, Kang Y Y, et al. Examining the developmental trajectory of an in vitro model of mouse primordial germ cells following exposure to environmentally relevant bisphenol A levels[J]. Environmental Health Perspectives, 2021, 129(9): 97013
    Intarapat S, Sailasuta A, Satayalai O. Genistein causes germ cell reduction in the genital ridges of Japanese quail Coturnix japonica embryo[J]. Polish Journal of Veterinary Sciences, 2016, 19(1): 57-64
    Mizushima S, Kuroiwa A. Research Note: Diethylstilbestrol reduces primordial germ cells in male Japanese quail[J]. Poultry Science, 2023, 102(10): 102910
    张易祥, 金秀梅, 李赞东, 等. 四氯联苯对鸡外源原始生殖细胞迁移的影响[J]. 中国环境科学, 2010, 30(4): 553-556

    Zhang Y X, Jin X M, Li Z D, et al. Effects of tetrachlorobiphenyl on the exogenous primordial germ cells in chick[J]. China Environmental Science, 2010, 30(4): 553-556(in Chinese)

    De Felici M, Dolci S, Pesce M. Proliferation of mouse primordial germ cells in vitro: A key role for cAMP[J]. Developmental Biology, 1993, 157(1): 277-280
    汝少国, 张晓雪, 王黎家. 环境内分泌干扰物生殖毒性的表观遗传学机制研究进展[J]. 海洋湖沼通报, 2016(1): 60-67 Ru S G, Zhang X X, Wang L J. Study of the epigenetic mechanism underlying the reproductive toxicity of endocrine disrupting chemicals[J]. Transactions of Oceanology and Limnology, 2016

    (1): 60-67(in Chinese)

    Zhang X F, Zhang L J, Feng Y N, et al. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells[J]. Molecular Biology Reports, 2012, 39(9): 8621-8628
    Brieño-Enríquez M A, Larriba E, Del Mazo J. Endocrine disrupters, microRNAs, and primordial germ cells: A dangerous cocktail[J]. Fertility and Sterility, 2016, 106(4): 871-879
    Callard G V, Tarrant A M, Novillo A, et al. Evolutionary origins of the estrogen signaling system: Insights from amphioxus[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(3/5): 176-188
    Safura S, Roba G, Freeman E. Evaluating the effects of bisphenols F and S with respect to bisphenol A on primordial germ cell migration in zebrafish (Danio rerio) embryos using immunofluorescence microscopy[J]. American Journal of Undergraduate Research, 2019, 16(3): 69-77
    Ben Maamar M, Nilsson E E, Skinner M K. Epigenetic transgenerational inheritance, gametogenesis and germline development[J]. Biology of Reproduction, 2021, 105(3): 570-592
    Roy J R, Chakraborty S, Chakraborty T R. Estrogen-like endocrine disrupting chemicals affecting puberty in humans: A review[J]. Medical Science Monitor, 2009, 15(6): RA137-RA145
    Tilghman S L, Bratton M R, Segar H C, et al. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells[J]. PLoS One, 2012, 7(3): e32754
    Liu S, Brind’Amour J, Karimi M M, et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells[J]. Genes & Development, 2014, 28(18): 2041-2055
    Kouzarides T. Chromatin modifications and their function[J]. Cell, 2007, 128(4): 693-705
    时小艳, 吴宝江, 于建宁, 等. 小鼠原始生殖细胞迁移过程中H2A.Z的表达[J]. 安徽农业大学学报, 2013, 40(3): 422-425

    Shi X Y, Wu B J, Yu J N, et al. Mouse primordial germ cells (PGCs) expression of H2A.Z during migration[J]. Journal of Anhui Agricultural University, 2013, 40(3): 422-425(in Chinese)

    Nonaka N, Kitajima T, Yokobayashi S, et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast[J]. Nature Cell Biology, 2002, 4(1): 89-93
    Adams R R, Carmena M, Earnshaw W C. Chromosomal passengers and the (aurora) ABCs of mitosis[J]. Trends in Cell Biology, 2001, 11(2): 49-54
    Valdés-Mora F, Song J Z, Statham A L, et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer[J]. Genome Research, 2012, 22(2): 307-321
    Zhu Z Y, Edwards R J, Boobis A R. Increased expression of histone proteins during estrogen-mediated cell proliferation[J]. Environmental Health Perspectives, 2009, 117(6): 928-934
  • 加载中
计量
  • 文章访问数:  782
  • HTML全文浏览数:  782
  • PDF下载数:  166
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-27
付志琪, 李振宇, 魏锦博, 汪畅, 程波, 曹梦西, 梁勇. 原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001
引用本文: 付志琪, 李振宇, 魏锦博, 汪畅, 程波, 曹梦西, 梁勇. 原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展[J]. 生态毒理学报, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001
Fu Zhiqi, Li Zhenyu, Wei Jinbo, Wang Chang, Cheng Bo, Cao Mengxi, Liang Yong. Developmental Regulation of Primordial Germ Cells and Progress of Toxic Effects Study of Environmental Estrogens on PGCs[J]. Asian journal of ecotoxicology, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001
Citation: Fu Zhiqi, Li Zhenyu, Wei Jinbo, Wang Chang, Cheng Bo, Cao Mengxi, Liang Yong. Developmental Regulation of Primordial Germ Cells and Progress of Toxic Effects Study of Environmental Estrogens on PGCs[J]. Asian journal of ecotoxicology, 2024, 19(5): 85-96. doi: 10.7524/AJE.1673-5897.20240327001

原始生殖细胞的发育调控及环境雌激素对其毒性效应的研究进展

    通讯作者: 曹梦西,E-mail:caomx@jhun.edu.cn; 
    作者简介: 付志琪(1999-),男,硕士研究生,研究方向为环境毒理学,E-mail:949266717@qq.com
  • 1. 武汉工程大学环境生态与生物工程学院, 武汉 430205;
  • 2. 江汉大学环境与健康学院, 武汉 430056;
  • 3. 华中师范大学生命科学学院, 武汉 430079
基金项目:

国家自然科学基金青年项目(21806058)

摘要: 随着环境雌激素(environmental estrogens, EEs)在人体样本尤其是孕早期人体样本中频繁被检出,对于EEs的生殖健康风险研究开始关注其对原始生殖细胞(primordial germ cells, PGCs)发生和迁移的影响。PGCs是生殖细胞的前体细胞,经过特化、迁移、分化后生成精子或卵子,作为高等生物体生命延续的载体,其遗传稳定性对人体生殖健康至关重要。本文以小鼠及斑马鱼为例总结了PGCs发育过程及其关键调控因子,讨论了雌激素在PGCs发育中的作用及其调控方式,在此基础上综述了EEs对PGCs的毒性效应及其分子机制的研究进展。了解EEs对PGCs的毒性效应及分子机制研究进展,将为EEs的人体生殖健康风险评估提供更为精准的科学依据。

English Abstract

参考文献 (86)

返回顶部

目录

/

返回文章
返回