纳米二氧化钛不同晶型混合物在环境改变下的沉降速率变化及其对细胞的毒性影响
Changes in the Settling Rate of Mixtures of Titanium Dioxide Nanoparticles of Different Crystalline Forms in Response to Environmental Alterations and Their Toxic Effects on Cells
-
摘要: 纳米量级二氧化钛(TiO2 nanoparticle,TNPs)中的金红石型TiO2-NPs (TNPs-R)和锐钛矿型TiO2-NPs (TNPs-A)被广泛应用于食品、化妆品、防晒霜等产品中。但有研究证实,TNPs可通过吸入、注射、皮肤穿透等暴露途径在组织中积累从而导致慢性疾病的产生。此外,在生产过程中为了优化材料性能,通常会使用不同比例TNPs-R和TNPs-A的混合物。但TNPs-R和TNPs-A暴露环境改变后对人肝细胞的毒性影响差异尚不明确。因此本研究选用粒径为25 nm的TNPs-R、TNPs-A,在单独、混合处理以及自然光或紫外光活性处理颗粒后将其配制成80 μg·mL-1,以紫外吸收比值Ae/A0法评估各处理组TNPs在静置3~12 h内的沉降性能;选取混合处理中沉降速率最高的TNPs-R∶TNPs-A=1∶9组与单独TNPs-R组、TNPs-A组暴露人肝细胞QGY 48 h,流式细胞术侧向光散射角(SSC)比值SSCe/SSC0评估颗粒进入细胞的效率,吉姆萨染色法分析细胞坏死率。研究发现,以水为溶剂时,TNPs-R沉降速率显著低于TNPs-A (P<0.001),混合处理时,在TNPs-R∶TNPs-A=1∶9组的沉降速率显著高于其他比例的混合组(P<0.05);以无血清培养基为溶剂时,TNPs-A和TNPs-R∶TNPs-A=1∶9组的沉降速率显著高于单独TNPs-R组(P<0.001)。叠加紫外暴露后,TNPs所有组的沉降速率均显著高于自然光TNPs-R组(P<0.01);与对照组相比,QGY细胞在TNPs-R、TNPs-R∶TNPs-A=1∶9和TNPs-A暴露48 h后,细胞内SSCe/SSC0均具有上升趋势,且3个暴露组均显著诱导QGY细胞坏死(P<0.01),相较而言,TNPs-R∶TNPs-A=1∶9诱导细胞坏死显著高于TNPs-R (P<0.001)。综上,随着TNPs-A组分比率升高,以及紫外暴露条件下,TNPs-R和TNPs-A混合物的理化特性会发生改变,导致沉降速率增大,进而诱导产生更强的人肝细胞的毒性,研究可为不同晶型TNPs的安全评价提供一定的科学依据。
-
关键词:
- 锐钛矿型纳米二氧化钛 /
- 金红石型纳米二氧化钛 /
- 人肝癌QGY细胞 /
- 细胞毒性 /
- 沉降速率
Abstract: Rutile TiO2-NPs (TNPs-R) and anatase TiO2-NPs (TNPs-A), both of which are nanoscale titanium dioxide (TiO2 nanoparticles, TNPs), have been widely used in food, cosmetics, sunscreens and other products. However, some studies have confirmed that TNPs can accumulate in tissues through different exposure routes such as inhalation, injection, and skin penetration, thereby leading to the development of chronic diseases. In addition, mixtures of varied ratios of TNPs-R and TNPs-A are often used in the manufacturing process to optimize material properties. However, differences in the toxic effects of TNPs-R and TNPs-A on human hepatocytes after exposure to environmental changes are unclear. In this study, TNPs-R and TNPs-A with a particle size of 25 nm were selected, and the particles were formulated into 80 μg·mL-1 after being treated individually or mixedly, as well as treated with natural light or UV light, and the sedimentation rate of TNPs of each treatment group was evaluated by the UV-absorption ratio Ae/A0 method after a standing period of 3-12 h. The results were summarized as follows. The TNPs-R∶TNPs-A=1∶9 group, which had the highest sedimentation rate in the mixed treatment, was selected to treat human hepatocytes QGY for 48 h with the TNPs-R or TNPs-A groups alone, and the efficiency of particles entering the cells was assessed by flow cytometry lateral light scattering angle (SSC) ratio SSCe/SSC0, and cell necrosis was analyzed by Giemsa staining. It was found that the TNPs-R sedimentation rate was significantly lower than that of TNPs-A when water was used as the solvent (P<0.001), and the sedimentation rate was significantly higher in the TNPs-R∶TNPs-A = 1∶9 group than in the mixed groups with other ratios (P<0.05) when mixed treatments were used. When serum-free medium was used as the solvent, the TNPs-A and TNPs-R∶TNPs-A=1∶9 groups had significantly higher sedimentation rates than the TNPs-R alone group (P<0.001). After being exposed to UV light, the sedimentation rates of all groups of TNPs were significantly higher than those of the natural-light treated TNPs-R group (P<0.01). Compared with the control group, QGY cells showed an increasing trend of intracellular SSCe/SSC0 after 48 h exposure to TNPs-R, TNPs-R∶TNPs-A=1∶9 and TNPs-A, and all three exposure groups significantly induced necrosis in QGY cells (P<0.01). TNPs-R∶TNPs-A=1∶9 induced a rate of cell necrosis significantly higher than that of TNPs-R (P<0.001). In conclusion, the physicochemical properties of TNPs-R and TNPs-A mixtures are altered with the elevated fraction of TNPs-A and UV exposure conditions, leading to increased sedimentation rates, which in turn induce higher toxicity to human hepatocytes. This study provides scientific references for the safety evaluation of TNPs with different crystalline forms. -
-
BRAUN J H, BAIDINS A, MARGANSKI R E. TiO2 pigment technology:a review[J]. Progress in organic coatings, 1992, 20(2):105-138. 任敏. 2015年钛白粉行业状况与市场运行分析[J].涂料技术与文摘, 2016, 37(5):2-7. REN M. Development and market analysis of TiO2 industry in 2015[J]. Coatings technology&abstracts, 2016, 37(5):2-7.
MO S D, CHING W Y. Electronic and optical properties of three phases of titanium dioxide:rutile, anatase, and brookite[J]. Physical review B, 1995, 51(19):13023-13032. RACOVITA A D. Titanium dioxide:structure, impact, and toxicity[J]. International journal of environmental research and public health, 2022, 19(9):5681. HE J, DU Y E, BAI Y, et al. Facile formation of anatase/rutile TiO2 nanocomposites with enhanced photocatalytic activity[J]. Molecules, 2019, 24(16):2996. WINKLER H C, NOTTER T, MEYER U, et al. Critical review of the safety assessment of titanium dioxide additives in food[J]. Journal of nanobiotechnology, 2018, 16(1):51. RASHID M M, FORTE TAVČER P, TOMŠIČ B. Influence of titanium dioxide nanoparticles on human health and the environment[J]. Nanomaterials, 2021, 11(9):2354. BEVACQUA E, OCCHIUZZI M A, GRANDE F, et al. TiO2-NPs toxicity and safety:an update of the findings published over the last six years[J]. Mini reviews in medicinal chemistry, 2023, 23(9):1050-1057. KHAN J, KIM N D, BROMHEAD C, et al. Hepatotoxicity of titanium dioxide nanoparticles[J]. Journal of applied toxicology, 2025, 45(1):23-46. 王晗,倪娟,周滔,等.纳米颗粒诱导肝脏毒性的研究进展[J].癌变·畸变·突变, 2018, 30(4):315-317 , 325. WANG H, NI J, ZHOU T, et al. Research progress of liver toxicity induced by nanoparticles[J]. Carcinogenesis, teratogenesis&mutagenesis, 2018, 30(4):315-317, 325.
OBERDÖRSTER G, OBERDÖRSTER E, OBERDÖRSTER J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J]. Environmental health perspectives, 2005, 113(7):823-839. WANG B, FENG W Y, WANG M, et al. Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice[J]. Journal of nanoparticle research, 2008, 10(2):263-276. 王丽,卢毅欣,杨琛,等.镉对纳米二氧化钛沉降性能的影响[J].水处理技术, 2017, 43(7):47-51 , 56. WANG L, LU Y X, YANG C, et al. Effects of Cd (Ⅱ) on the sedimentation of nano-TiO2 particles[J]. Technology of water treatment, 2017, 43(7):47-51, 56.
LEARY R, WESTWOOD A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon, 2011, 49(3):741-772. MAHDJOUB N, ALLEN N, KELLY P, et al. Thermally induced phase and photocatalytic activity evolution of polymorphous titania[J]. Journal of photochemistry and photobiology A:chemistry, 2010, 210(2/3):125-129. WETCHAKUN N, INCESSUNGVORN B, WETCHAK-UN K, et al. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol-gel method[J]. Materials letters, 2012, 82:195-198. SHAKEEL M, JABEEN F, SHABBIR S, et al. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure:a review[J]. Biological trace element research, 2016, 172(1):1-36. 王丽.腐殖酸对纳米二氧化钛在水体中的沉降性能及吸附镉的影响[D].广州:华南理工大学, 2017:2-3. WANG L. Effect of humic acid on sedimentation of nano-TiO2 in water and cadmium adsorption[D]. Guangzhou:South China University of Technology, 2017 :2-3.
RENNICK J J, JOHNSTON A P R, PARTON R G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics[J]. Nature nanotechnology, 2021, 16(3):266-276. MANZANARES D, CEÑA V. Endocytosis:the nanoparticle and submicron nanocompounds gateway into the cell[J]. Pharmaceutics, 2020, 12(4):371. ZHANG S L, GAO H J, BAO G. Physical principles of nanoparticle cellular endocytosis[J]. ACS nano, 2015, 9(9):8655-8671. ZUCKER R M, ORTENZIO J, DEGN L L, et al. Biophysical comparison of four silver nanoparticles coatings using microscopy, hyperspectral imaging and flow cytometry[J]. PLoS One, 2019, 14(7):e0219078. ZUCKER R, BOYES W. Detection of silver and TiO2 nanoparticles in cells by flow cytometry[J]. Nanoparticles in biology and medicine:methods and protocols, 2020, 2118:415-436. ALLOUNI Z E, CIMPAN M R, HØL P J, et al. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium[J]. Colloids and surfaces B:biointerfaces, 2009, 68(1):83-87. 张若愚,李雪宁,林冰洁,等.纳米二氧化钛的蓄积作用与生物毒性研究进展[J].医学综述, 2021, 27(13):2552-2557. ZHANG R Y, LI X N, LIN B J, et al. Research progress in accumulation and biotoxicity of titanium dioxide nano particles[J]. Medical recapitulate, 2021, 27(13):2552-2557.
DAR G I, SAEED M, WU A. TiO2 nanoparticles:applications in nanobiotechnology and nanomedicine[M]. Weinheim:Wiley-VCH Verlag GmbH&Co. KGaA, 2020:67-103. 刘朝阳,方艳艳,章智冰.纳米二氧化钛暴露的神经毒性作用及机制[J].中国环境科学, 2024, 44(9):5275-5285. LIU C Y, FANG Y Y, ZHANG Z B. The neurotoxic effects and mechanisms of titanium dioxide nanoparticles[J]. China environmental science, 2024, 44(9):5275-5285.
GERLOFF K, FENOGLIO I, CARELLA E, et al. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells[J]. Chemical research in toxicology, 2012, 25(3):646-655. -

计量
- 文章访问数: 158
- HTML全文浏览数: 158
- PDF下载数: 64
- 施引文献: 0