非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征

张荧, 吴江平, 余乐洹, 何明靖, 罗孝俊, 麦碧娴. 非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征[J]. 环境化学, 2011, 30(1): 34-43.
引用本文: 张荧, 吴江平, 余乐洹, 何明靖, 罗孝俊, 麦碧娴. 非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征[J]. 环境化学, 2011, 30(1): 34-43.
ZHANG Ying, WU Jiangping, YU Lehuan, HE Mingjing, LUO Xiaojun, MAI Bixian. A REVIEW ON BIOACCUMULATION BEHAVIOR OF NON-PBDE HALOGENATED FLAME RETARDANTS[J]. Environmental Chemistry, 2011, 30(1): 34-43.
Citation: ZHANG Ying, WU Jiangping, YU Lehuan, HE Mingjing, LUO Xiaojun, MAI Bixian. A REVIEW ON BIOACCUMULATION BEHAVIOR OF NON-PBDE HALOGENATED FLAME RETARDANTS[J]. Environmental Chemistry, 2011, 30(1): 34-43.

非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征

  • 基金项目:

    国家自然科学基金项目 (No. 40632012,40873074, 40821003)

    国家重点基础研究发展计划(973)项目 (No. 2003CB415002)资助.

A REVIEW ON BIOACCUMULATION BEHAVIOR OF NON-PBDE HALOGENATED FLAME RETARDANTS

  • Fund Project:
  • 摘要: 近年来, 六溴环十二烷(HBCDs)、四溴双酚A(TBBPA)、双(六氯环戊二烯)环辛烷(DP)、十溴二苯乙烷(DBDPE)、1,2-双(三溴苯氧基)乙烷(BTBPE)、五溴甲苯(PBT)、2,3,4,5,6-五溴乙苯(PBEB)和六溴苯(HBB)等非 PBDE类卤系阻燃剂(HFRs)在生物体内的富集及其生态风险已引起人们的广泛关注. 本文结合国内外相关文献, 对DP的生物富集特征及其影响因素、非PBDE类HFRs的生物富集能力及其沿食物链(网)的生物放大效应进行了综述. 与DP工业品和沉积物中DP的异构体组成相比, 生物体内顺式-DP(syn-DP)盈余, 而反式-DP(anti-DP)亏损, DP异构体不同的理化性质(立体结构、水溶性和KOW等)、生物的种类及其营养级以及环境因素等都可能影响了DP的生物富集特征. 文献计算的生物浓缩因子(BCFs)或生物富集因子(BAFs)表明, HBCDs和DP具有显著的生物富集效应. 报道的生物放大因子(BMFs)和营养级放大因子(TMFs)显示, 这些非PBDE类HFRs可以沿食物链(网)产生生物放大效应. 大部分非PBDE类HFRs的食物链放大能力与PBDEs相当, 表明这些污染物具有较大的生态风险.
  • 加载中
  • [1] De Wit C A. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 46 (5): 583-624
    [2] Alaee M, Arias P, Sjodin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environ Int, 2003, 29 (6): 683-689
    [3] Betts K. New data on a widely used flame retardant[J]. Environ Sci Technol, 2008, 42(1): 5-6
    [4] Gauthier L T, Hebert C E, Weseloh D V C, et al. Current-use flame retardants in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes[J]. Environ Sci Technol, 2007, 41(13):4561-4567
    [5] Wu J P, Zhang Y, Luo X J, et al. Isomer-specific bioaccumulation and trophic transfer of dechlorane plus in the freshwater food web from a highly contaminated site, South China[J]. Environ Sci Technol, 2010, 44(2):606-611
    [6] Zhang Y, Luo X J, Wu J P, et al. Contaminant pattern and bioaccumulation of legacy and emerging organhalogen pollutants in the aquatic biota from an e-waste recycling region in South China[J]. Environ Toxicol Chem, 2010, 29(4):852-859
    [7] Covaci A, Gerecke A C, Law R J, et al. Hexabromocyclododecanes (HBCDs) in the environment and humans: A review[J]. Environ Sci Technol, 2006, 40(12): 3679-3688
    [8] Covaci A, Voorspoels S, Abdallah M A E, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives[J]. J Chromatogr A, 2009, 1216(3): 346-363
    [9] Law R J, Herzke D, Harrad S, et al. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs[J]. Chemosphere, 2008, 73(2): 223-241
    [10] Luo X J, Chen S J, Mai B X, et al. Advances in the study of current-use non-PBDE brominated flame retardants and dechlorane plus in the environment and humans[J]. Sci China Chem, 2010, 53(5): 961-973
    [11] Hoh E, Zhu L Y, and Hites, R A. Dechlorane plus, a chlorinated flame retardant, in the Great lakes[J]. Environ Sci Technol, 2006, 40(4): 1184-1189
    [12] Sverko E, Reiner E J, Tomy G T, et al. Compounds structurally related to dechlorane plus in sediment and biota from Lake Ontario (Canada)[J]. Environ Sci Technol, 2010, 44(2): 574-579
    [13] Sverko E, Tomy G T, Marvin C H, et al. Dechlorane plus levels in sediment of the lower Great lakes[J]. Environ Sci Technol, 2008, 42(2): 361-366
    [14] Shen L, Reiner E J, Macpherson K A, et al. Identification and screening analysis of halogenated flame retardants in the Laurentian Great Lakes: Dechloranes 602, 603, and 604[J]. Environ Sci Technol, 2010, 44(2): 760-766
    [15] Qiu X H, Marvin C H, Hites R A. Dechlorane plus and other flame retardants in a sediment core from Lake Ontario[J]. Environ Sci Technol, 2007, 41(17): 6014-6019
    [16] Tomy G T, Pleskach K, Ismail N, et al. Isomers of dechlorane plus in Lake Winnipeg and Lake Ontario food webs[J]. Environ Sci Technol, 2007, 41(7):2249-2254
    [17] Zhu J, Feng Y L, and Shoeib M. Detection of dechlorane plus in residential indoor dust in the city of Ottawa, Canada[J]. Environ Sci Technol, 2007, 41(22): 7694-7698
    [18] Gauthier L T and Letcher R J. Isomers of dechlorane plus flame retardant in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes of North America: temporal changes and spatial distribution[J]. Chemosphere, 2009, 75(1): 115-120
    [19] Gauthier L T, Potter D, Hebert C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls[J]. Environ Sci Technol, 2009, 43(2): 312-317
    [20] Ismail N, Gewurtz S B, Pleskach K, et al. Brominated and chlorinated flame retardants in Lake Ontario, Canada, lake trout (Salvelinus Namaycush) between 1979 and 2004 and possible influences of food-web changes[J]. Environ Sci Technol, 2009, 28(5):910-920
    [21] Qiu X H and Hites, R A. Dechlorane plus and other flame retardants in tree bark from the Northeastern United States[J]. Environ Sci Technol, 2008, 42(1): 31-36
    [22] Venier M and Hites R A. Flame retardants in the atmosphere near the Great Lakes[J]. Environ Sci Technol, 2008, 42(13): 4745-4751
    [23] Kang J H, Kim J C, Jin G Z et al. Detection of dechlorane plus in fish from urban-industrial rivers[J]. Chemosphere, 2010, 79(8): 850-854
    [24] Ren N Q, Sverko E, Li Y F, et al. Levels and isomer profiles of dechlorane plus in Chinese air[J]. Environ Sci Technol, 2008, 42(17): 6476-6480
    [25] Ren G F, Yu Z Q, Ma S T, et al. Determination of dechlorane plus in serum from electronics dismantling workers in South China[J]. Environ Sci Technol, 2009, 43(24):9453-9457
    [26] Qi H, Liu L Y, Jia H L, et al. Dechlorane plus in surficial water and sediment in a Northeastern Chinese river[J]. Environ Sci Technol, 2010, 44(7):2305-2308
    [27] Tomy G T, Thomas C R, Zidane T M, et al. Examination of isomer specific bioaccumulation parameters and potential in vivo hepatic metabolites of syn- and anti-dechlorane plus isomers in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Environ Sci Technol, 2008, 42(15):5562-5567
    [28] Mackay D and Fraser A. Bioaccumulation of persistent organic chemicals: mechanisms and models[J]. Environ Pollut, 2000, 110(3): 375-391
    [29] Wu J P, Luo X J, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China[J]. Environ Int, 2008, 34(8): 1109-1113
    [30] OECD. Harmonised integrated classification system for human health and environmental hazards of chemical substances and mixtures. OECD Series on Testing and Assessment, Number 33, 2001
    [31] Kelly B C, Ikonomou, M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants[J]. Science, 2007, 317: 236-239
    [32] Environment Canada. Guidance manual for the categorization of organic and inorganic substances on Canada's Domestic Substances List: Determining persistence, bioaccumulation potential, and inherent toxicity to non-human organisms. Existing Substances Branch: Canada, 2003
    [33] Hayward S J, Lei Y D, and Wania F. Comparative evaluation of three high-performance liquid chromatography-based Kow estimation methods for highly hydrophobic organic compounds: Polybrominated diphenyl ethers and hexabromocyclododecane[J]. Environ Toxicol Chem, 2006, 25(8): 2018-2027
    [34] Veith G, Defoe D, and Bergstedt B. Measuring and estimating the bioconcentration factor of chemicals in fish[J]. J Fish Res Board Can, 1979, 36: 1040-1048
    [35] Drottar K, Krueger H. Hexabromocyclododecane (HBCD): A flow-through bioconcentration test with the rainbow trout (Oncorhynchus mykiss) -Final report. Wildlife International Ltd, 2000(Easton, Maryland, USA):78
    [36] Harrad S, Abdallah M A E, Rose N L, et al. Current-use brominated flame retardants in water, sediment, and fish from English lakes[J]. Environ Sci Technol, 2009, 43(24): 9077-9083
    [37] Wu J P, Guan Y T, Zhang Y, et al. Trophodynamics of hexabromocyclododecanes, tetrabromobisphenol A, and several other non-PBDE brominated flame retardants in a freshwater food web[J]. Environ Sci Technol, 2010, 44(14): 5490-5495
    [38] Barlow S, Sullivan F. Reproductive Hazards of Industrial Chemicals. An evaluation of animal and human data[M]. London: Academic Press Incorporation, 1982
    [39] IARC. IARC Mo-nographs on the evaluation of carcinogenic risks to humans. Supplement 6. Lyon: IARC, World Health Organization, 1987
    [40] Hardy M L. A comparison of the fish bioconcentration factors for brominated flame retardants with their nonbrominated analogues[J]. Environ Toxicol Chem, 2004, 23(3): 656-661
    [41] George K W, Haggblom M M. Microbial o-methylation of the flame retardant tetrabromobisphenol-A[J]. Environ Sci Technol, 2008, 42(15): 5555-5561
    [42] Luo X J, Zhang X L, Chen S J, et al. Free and bound polybrominated diphenyl ethers and tetrabromobisphenol A in freshwater sediments[J]. Mar Pollut Bull, 2010, 60(5): 718-724
    [43] Sjdin A, Carlsson H, Thuresson K, et al. Flame retardants in indoor air at an electronics recycling plant and at other work environments[J]. Environ Sci Technol, 2001, 35(3): 448-454
    [44] Hagmar L, Sjdin A, Hglund P, et al. Biological half-lives of polybrominated diphenyl ethers and tetrabromobisphenol A in exposed workers[J]. Organohalogen Compd, 2000, 47: 198-201
    [45] Watanabe W, Shimizu T, Sawamura R, et al. Effects of tetrabromobisphenol A, a brominated flame retardant, on the immune response to respiratory syncytial virus infection in mice[J]. Int Immunopharmacol, 2010, 10(4): 393-397
    [46] Oliver B G and Niimi A J. Bioconcentration factors of some halogenated organics for rainbow trout-limitations in their use for prediction of environmental residues[J]. Environ Sci Technol, 1985, 19(9): 842-849
    [47] 吴江平, 张荧, 罗孝俊, 等. 多溴联苯醚的生物富集效应研究进展[J]. 生态毒理学报, 2009, 4(2): 153—163
    [48] Tomy G T, Budakowski W, Halldorson T, et al. Biomagnification of alpha- and gamma-hexabromocyclododecane isomers in a Lake Ontario food web[J]. Environ Sci Technol, 2004, 38(8): 2298-2303
    [49] Law K, Halldorson T, Danell R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web[J]. Environ Toxicol Chem, 2006, 25(8): 2177-2186
    [50] Tomy G T, Pleskach K, Oswald T, et al. Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian Arctic marine food web[J]. Environ Sci Technol, 2008, 42(10): 3634-3639
    [51] He M J, Luo X J, Zhang X L, et al. Tetrabromobisphenol-A and hexabromocyclododecane in birds from an e-waste site in South China: Influence of diet on diastereoisomer- and enantiomer-specific distribution and trophodynamics[J]. Environ Sci Technol, 2010,44(15): 5748-5754
    [52] Wu J P, Luo X J, Zhang Y, et al. Biomagnification of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls in a highly contaminated freshwater food web from South China[J]. Environ Pollut, 2009, 157(3): 904-909
    [53] S rmo E G, Salmer M P, Jenssen B M, et al. Biomagnification of polybrominated diphenyl ether and hexabromocyclododecane flame retardants in the polar bear food chain in Svalbard, Norway[J]. Environ Toxicol Chem, 2006, 25(9): 2502-2511
    [54] Jenssen B M, Sormo E G, Baek K, et al. Brominated flame retardants in North-east Atlantic marine ecosystems[J]. Environ Health Perspect, 2007, 115: 35-41
  • 加载中
计量
  • 文章访问数:  1299
  • HTML全文浏览数:  1173
  • PDF下载数:  439
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-06-24
张荧, 吴江平, 余乐洹, 何明靖, 罗孝俊, 麦碧娴. 非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征[J]. 环境化学, 2011, 30(1): 34-43.
引用本文: 张荧, 吴江平, 余乐洹, 何明靖, 罗孝俊, 麦碧娴. 非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征[J]. 环境化学, 2011, 30(1): 34-43.
ZHANG Ying, WU Jiangping, YU Lehuan, HE Mingjing, LUO Xiaojun, MAI Bixian. A REVIEW ON BIOACCUMULATION BEHAVIOR OF NON-PBDE HALOGENATED FLAME RETARDANTS[J]. Environmental Chemistry, 2011, 30(1): 34-43.
Citation: ZHANG Ying, WU Jiangping, YU Lehuan, HE Mingjing, LUO Xiaojun, MAI Bixian. A REVIEW ON BIOACCUMULATION BEHAVIOR OF NON-PBDE HALOGENATED FLAME RETARDANTS[J]. Environmental Chemistry, 2011, 30(1): 34-43.

非多溴联苯醚(PBDE)类卤系阻燃剂的生物富集特征

  • 1.  有机地球化学国家重点实验室, 中国科学院广州地球化学研究所, 广州, 510640;
  • 2.  中国科学院研究生院, 北京, 100049;
  • 3.  清华大学深圳研究生院, 深圳, 518055
基金项目:

国家自然科学基金项目 (No. 40632012,40873074, 40821003)

国家重点基础研究发展计划(973)项目 (No. 2003CB415002)资助.

摘要: 近年来, 六溴环十二烷(HBCDs)、四溴双酚A(TBBPA)、双(六氯环戊二烯)环辛烷(DP)、十溴二苯乙烷(DBDPE)、1,2-双(三溴苯氧基)乙烷(BTBPE)、五溴甲苯(PBT)、2,3,4,5,6-五溴乙苯(PBEB)和六溴苯(HBB)等非 PBDE类卤系阻燃剂(HFRs)在生物体内的富集及其生态风险已引起人们的广泛关注. 本文结合国内外相关文献, 对DP的生物富集特征及其影响因素、非PBDE类HFRs的生物富集能力及其沿食物链(网)的生物放大效应进行了综述. 与DP工业品和沉积物中DP的异构体组成相比, 生物体内顺式-DP(syn-DP)盈余, 而反式-DP(anti-DP)亏损, DP异构体不同的理化性质(立体结构、水溶性和KOW等)、生物的种类及其营养级以及环境因素等都可能影响了DP的生物富集特征. 文献计算的生物浓缩因子(BCFs)或生物富集因子(BAFs)表明, HBCDs和DP具有显著的生物富集效应. 报道的生物放大因子(BMFs)和营养级放大因子(TMFs)显示, 这些非PBDE类HFRs可以沿食物链(网)产生生物放大效应. 大部分非PBDE类HFRs的食物链放大能力与PBDEs相当, 表明这些污染物具有较大的生态风险.

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回