基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数

迟平, 李雪花, 陈景文, 陈明明, 王亚南, 张金多, 张翼飞. 基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数[J]. 环境化学, 2011, 30(1): 366-373.
引用本文: 迟平, 李雪花, 陈景文, 陈明明, 王亚南, 张金多, 张翼飞. 基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数[J]. 环境化学, 2011, 30(1): 366-373.
CHI Ping, LI Xuehua, CHEN Jingwen, CHEN Mingming, WANG Yanan, ZHANG Jinduo, ZHANG Yifei. PREDICTION OF THE PARTITION COEFFICIENTS BETWEEN SEMIPERMEABLE MEMBRANE DEVICES AND ENVIRONMENTAL MEDIA BY LINEAR SOLVATION ENERGY RELATIONSHIPS[J]. Environmental Chemistry, 2011, 30(1): 366-373.
Citation: CHI Ping, LI Xuehua, CHEN Jingwen, CHEN Mingming, WANG Yanan, ZHANG Jinduo, ZHANG Yifei. PREDICTION OF THE PARTITION COEFFICIENTS BETWEEN SEMIPERMEABLE MEMBRANE DEVICES AND ENVIRONMENTAL MEDIA BY LINEAR SOLVATION ENERGY RELATIONSHIPS[J]. Environmental Chemistry, 2011, 30(1): 366-373.

基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数

  • 基金项目:

    中央高校基本科研业务费专项资金资助.

PREDICTION OF THE PARTITION COEFFICIENTS BETWEEN SEMIPERMEABLE MEMBRANE DEVICES AND ENVIRONMENTAL MEDIA BY LINEAR SOLVATION ENERGY RELATIONSHIPS

  • Fund Project:
  • 摘要: 半透膜采样装置(SPMD)作为一种重要的被动采样器,被用于监测有机污染物的环境水平.SPMD的采样材料是置于低密度聚乙烯"口袋"中的三油酸甘油酯.根据有机污染物在被动采样材料与环境介质之间的平衡分配系数(包括被动采样材料/空气分配系数KSA和被动采样材料/水分配系数KSW)值,可估算SPMD的采样速率,也可计算环境中污染物的浓度.但目前仅有几十个KSA和KSW值,制约着SPMD的进一步应用.本研究基于线性溶解能关系(LSER)理论,搜集和计算了污染物的LSER参数,应用多元线性回归分析,分别建立了预测KSA和KSW的LSER模型.模型覆盖的污染物类型包括:多环芳烃、多氯联苯、氯苯、氯代苯酚、有机氯农药、除虫菊酯、有机磷和有机硫化合物.模型具有较强的拟合能力、稳健性和预测能力,并能够揭示和解释污染物在被动采样材料/环境介质间分配的影响因素和机理.
  • 加载中
  • [1] Ockenden W A, Corrigan B P, Howsam M, et al. Further development in the use of semipermeable membrane devices as passive air samplers: application to PCBs[J]. Environ Sci & Technol, 2001, 35:4536-4543
    [2] Shoeib M, Harner T. Characterization and comparison of three passive air samplers for persistent organic pollutants[J]. Environ Sci & Technol, 2002, 36:4142-4151
    [3] Harner T, Shoeib M, Diamond M, et al. Passive sampler derived air concentration of PBDEs along an urban-rural transect:spatial and temporal trends[J]. Chemosphere, 2006, 64:262-267
    [4] Huckins J N, Manuweera G K, Petty J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water[J]. Environ Sci & Technol, 1993, 27:2489-2496
    [5] Huckins J N, Petty J D, Lebo J A, et al. Development of the permeability/ performance reference compounds approach for in situ calibration of semipermeable membrane devices[J]. Environ Sci & Technol, 2002, 36:85-91
    [6] 陈景文,李雪花,于海瀛,等.面向毒害有机物生态风险评价的(Q)SAR技术:进展与展望[J]. 中国科学 B辑:化学,2008,38(6):461-474
    [7] Zhang H, Zhao S, Yu Y, et al. Retention of nonionic organic compounds on thermally treated soils[J]. Environ Sci & Technol, 2010, 44:3677-3682
    [8] Endo S, Grathwohl P, Haderlein S B, et al. Compound-specific factors influencing sorption nonlinearity in natural organic matter[J]. Environ Sci & Technol, 2008, 42:5897-5903
    [9] Walter L C, David A A, James H H, et al. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)[J]. Atmos Environ, 2009, 43:3211-3219
    [10] Cicenaite A, Huckins J N, Alvarez D A, et al. Feasibility of a simple laboratory approach for determining temperature influence on SPMD-air partition coefficients of selected compounds[J]. Atmos Environ, 2007, 41:2844-2850
    [11] Larry B B, Steffanie H K, Ronard C A, et al. Accumulation of contaminants in fish from wastewater treatment wetlands[J]. Environ Sci & Technol, 2006, 40:603-611
    [12] Huckins J N, Petty J D, Booij K. Monitors of organic chemicals in the environment:semipermeable membrane devices[M]. New York: Springer, 2006
    [13] Prikryl P, Sevcik J G K. Characterization of sorption mechanisms of solid-phase microextraction with volatile organic compounds in air samples using a linear solvation energy relationship approach[J]. J Chromatogr A, 2008, 1179:24-32
    [14] Vitha M, Carr Poole S K, et al. Determination of solute descriptors by chromatographic methods[J]. Anal Chim Acta, 2009, 652:32-53
    [15] Endo S, Schmidt T C. Prediction of partitioning between complex organic mixtures and water:application of polyparameter linear free energy relationships[J]. Environ Sci & Technol, 2006, 40:536-545
    [16] Mutelet F, Rogalski M. Using temperature gradient gas chromatography to determine or predict vapor pressures and linear solvation energy relationship parameters of highly boiling organic compounds[J]. J Chromatogr A, 2003, 988:117-126
    [17] Luehrs D C, Hickey J P, Nilsen P E, et al. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon[J]. Environ Sci & Technol, 1996, 30:143-152
    [18] Gtz C W, Scheringer M, Roth C M, et al. Gas-particle partitioning of semivolatile organic chemicals:model development and comparison[J]. Environ Sci & Technol, 2007, 41:1272-1278
    [19] Gtz C W, Scheringer M, Macleod M, et al. Dependence of persistence and long-range transport potential on gas-particle partitioning in multimedia models[J]. Environ Sci & Technol, 2008, 42:3690-3696
    [20] Brown T N, Wania F. Development and exploration of an organic contaminant fate model using poly-parameter linear free energy relationships[J]. Environ Sci & Technol, 2009, 43:6676-6683
    [21] Tülp H C, Goss K, Schwarzenbach R P, et al. Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals[J]. Environ Sci & Technol, 2008, 42:2034-2040
    [22] Abraham M H, Enomoto K, Clarke E D, et al. Hydrogen bond basicity of the chlorogroup; hexachlorocyclohexanes as strong hydrogen bond bases[J]. J Org Chem, 2002, 67:4782-4786
    [23] Abraham M H, Al-Hussaini A J M. Solvation parameters for the 209 PCBs:calculation of physicochemical properties[J]. J Environ Monit, 2005, 7:295-301
    [24] Bui H, Masquelin T, Perun T, et al. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships[J]. J Chromatogr A, 2008, 1206:186-195
    [25] Květa K, Jana L, Eva T. Linear free energy relationship as a tool for characterization of three teicoplanin-based chiral stationary phases under various mobile phase compositions[J]. J Sep Sci, 2006, 29:1476-1485
    [26] Abraham M H, Ibrahim A Jr W. Partition of compounds from gas to water and from gas to physicological saline at 310 K:linear free energy relationships[J]. Fluid Phase Equilibria, 2007, 251:93-109
    [27] Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set in descriptor space:a review[J]. Atla-altern Lab Anim, 2005, 33:445-459
    [28] Vitha M, Carr P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography[J]. J Chromatogr A, 2006, 1126:143-194
    [29] Jurado E, Bravo V, Vicaria J M, et al. Triolein solubilization using highly biodegradable non-ionic surfactant[J]. Colloid Surf A-Physicochem Eng Asp, 2008, 326:162-168
    [30] Nakamura S, Nakanishi I, Kitaura K. Binding affinity prediction of non-peptide inhibitors of HIV-1 protease using COMBINE model introduced from peptide inhibitors[J]. Bioorg Med Chem Lett, 2006, 16:6334-6337
  • 加载中
计量
  • 文章访问数:  795
  • HTML全文浏览数:  795
  • PDF下载数:  304
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-08-23
  • 刊出日期:  2011-01-15
迟平, 李雪花, 陈景文, 陈明明, 王亚南, 张金多, 张翼飞. 基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数[J]. 环境化学, 2011, 30(1): 366-373.
引用本文: 迟平, 李雪花, 陈景文, 陈明明, 王亚南, 张金多, 张翼飞. 基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数[J]. 环境化学, 2011, 30(1): 366-373.
CHI Ping, LI Xuehua, CHEN Jingwen, CHEN Mingming, WANG Yanan, ZHANG Jinduo, ZHANG Yifei. PREDICTION OF THE PARTITION COEFFICIENTS BETWEEN SEMIPERMEABLE MEMBRANE DEVICES AND ENVIRONMENTAL MEDIA BY LINEAR SOLVATION ENERGY RELATIONSHIPS[J]. Environmental Chemistry, 2011, 30(1): 366-373.
Citation: CHI Ping, LI Xuehua, CHEN Jingwen, CHEN Mingming, WANG Yanan, ZHANG Jinduo, ZHANG Yifei. PREDICTION OF THE PARTITION COEFFICIENTS BETWEEN SEMIPERMEABLE MEMBRANE DEVICES AND ENVIRONMENTAL MEDIA BY LINEAR SOLVATION ENERGY RELATIONSHIPS[J]. Environmental Chemistry, 2011, 30(1): 366-373.

基于线性溶解能关系预测污染物在被动采样材料与环境介质之间的分配系数

  • 1. 工业生态与环境工程教育部重点实验室, 大连理工大学环境学院, 大连, 116024
基金项目:

中央高校基本科研业务费专项资金资助.

摘要: 半透膜采样装置(SPMD)作为一种重要的被动采样器,被用于监测有机污染物的环境水平.SPMD的采样材料是置于低密度聚乙烯"口袋"中的三油酸甘油酯.根据有机污染物在被动采样材料与环境介质之间的平衡分配系数(包括被动采样材料/空气分配系数KSA和被动采样材料/水分配系数KSW)值,可估算SPMD的采样速率,也可计算环境中污染物的浓度.但目前仅有几十个KSA和KSW值,制约着SPMD的进一步应用.本研究基于线性溶解能关系(LSER)理论,搜集和计算了污染物的LSER参数,应用多元线性回归分析,分别建立了预测KSA和KSW的LSER模型.模型覆盖的污染物类型包括:多环芳烃、多氯联苯、氯苯、氯代苯酚、有机氯农药、除虫菊酯、有机磷和有机硫化合物.模型具有较强的拟合能力、稳健性和预测能力,并能够揭示和解释污染物在被动采样材料/环境介质间分配的影响因素和机理.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回