[1]
|
Ockenden W A, Corrigan B P, Howsam M, et al. Further development in the use of semipermeable membrane devices as passive air samplers: application to PCBs[J]. Environ Sci & Technol, 2001, 35:4536-4543
|
[2]
|
Shoeib M, Harner T. Characterization and comparison of three passive air samplers for persistent organic pollutants[J]. Environ Sci & Technol, 2002, 36:4142-4151
|
[3]
|
Harner T, Shoeib M, Diamond M, et al. Passive sampler derived air concentration of PBDEs along an urban-rural transect:spatial and temporal trends[J]. Chemosphere, 2006, 64:262-267
|
[4]
|
Huckins J N, Manuweera G K, Petty J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water[J]. Environ Sci & Technol, 1993, 27:2489-2496
|
[5]
|
Huckins J N, Petty J D, Lebo J A, et al. Development of the permeability/ performance reference compounds approach for in situ calibration of semipermeable membrane devices[J]. Environ Sci & Technol, 2002, 36:85-91
|
[6]
|
陈景文,李雪花,于海瀛,等.面向毒害有机物生态风险评价的(Q)SAR技术:进展与展望[J]. 中国科学 B辑:化学,2008,38(6):461-474
|
[7]
|
Zhang H, Zhao S, Yu Y, et al. Retention of nonionic organic compounds on thermally treated soils[J]. Environ Sci & Technol, 2010, 44:3677-3682
|
[8]
|
Endo S, Grathwohl P, Haderlein S B, et al. Compound-specific factors influencing sorption nonlinearity in natural organic matter[J]. Environ Sci & Technol, 2008, 42:5897-5903
|
[9]
|
Walter L C, David A A, James H H, et al. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)[J]. Atmos Environ, 2009, 43:3211-3219
|
[10]
|
Cicenaite A, Huckins J N, Alvarez D A, et al. Feasibility of a simple laboratory approach for determining temperature influence on SPMD-air partition coefficients of selected compounds[J]. Atmos Environ, 2007, 41:2844-2850
|
[11]
|
Larry B B, Steffanie H K, Ronard C A, et al. Accumulation of contaminants in fish from wastewater treatment wetlands[J]. Environ Sci & Technol, 2006, 40:603-611
|
[12]
|
Huckins J N, Petty J D, Booij K. Monitors of organic chemicals in the environment:semipermeable membrane devices[M]. New York: Springer, 2006
|
[13]
|
Prikryl P, Sevcik J G K. Characterization of sorption mechanisms of solid-phase microextraction with volatile organic compounds in air samples using a linear solvation energy relationship approach[J]. J Chromatogr A, 2008, 1179:24-32
|
[14]
|
Vitha M, Carr Poole S K, et al. Determination of solute descriptors by chromatographic methods[J]. Anal Chim Acta, 2009, 652:32-53
|
[15]
|
Endo S, Schmidt T C. Prediction of partitioning between complex organic mixtures and water:application of polyparameter linear free energy relationships[J]. Environ Sci & Technol, 2006, 40:536-545
|
[16]
|
Mutelet F, Rogalski M. Using temperature gradient gas chromatography to determine or predict vapor pressures and linear solvation energy relationship parameters of highly boiling organic compounds[J]. J Chromatogr A, 2003, 988:117-126
|
[17]
|
Luehrs D C, Hickey J P, Nilsen P E, et al. Linear solvation energy relationship of the limiting partition coefficient of organic solutes between water and activated carbon[J]. Environ Sci & Technol, 1996, 30:143-152
|
[18]
|
Gtz C W, Scheringer M, Roth C M, et al. Gas-particle partitioning of semivolatile organic chemicals:model development and comparison[J]. Environ Sci & Technol, 2007, 41:1272-1278
|
[19]
|
Gtz C W, Scheringer M, Macleod M, et al. Dependence of persistence and long-range transport potential on gas-particle partitioning in multimedia models[J]. Environ Sci & Technol, 2008, 42:3690-3696
|
[20]
|
Brown T N, Wania F. Development and exploration of an organic contaminant fate model using poly-parameter linear free energy relationships[J]. Environ Sci & Technol, 2009, 43:6676-6683
|
[21]
|
Tülp H C, Goss K, Schwarzenbach R P, et al. Experimental determination of LSER parameters for a set of 76 diverse pesticides and pharmaceuticals[J]. Environ Sci & Technol, 2008, 42:2034-2040
|
[22]
|
Abraham M H, Enomoto K, Clarke E D, et al. Hydrogen bond basicity of the chlorogroup; hexachlorocyclohexanes as strong hydrogen bond bases[J]. J Org Chem, 2002, 67:4782-4786
|
[23]
|
Abraham M H, Al-Hussaini A J M. Solvation parameters for the 209 PCBs:calculation of physicochemical properties[J]. J Environ Monit, 2005, 7:295-301
|
[24]
|
Bui H, Masquelin T, Perun T, et al. Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships[J]. J Chromatogr A, 2008, 1206:186-195
|
[25]
|
Květa K, Jana L, Eva T. Linear free energy relationship as a tool for characterization of three teicoplanin-based chiral stationary phases under various mobile phase compositions[J]. J Sep Sci, 2006, 29:1476-1485
|
[26]
|
Abraham M H, Ibrahim A Jr W. Partition of compounds from gas to water and from gas to physicological saline at 310 K:linear free energy relationships[J]. Fluid Phase Equilibria, 2007, 251:93-109
|
[27]
|
Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set in descriptor space:a review[J]. Atla-altern Lab Anim, 2005, 33:445-459
|
[28]
|
Vitha M, Carr P W. The chemical interpretation and practice of linear solvation energy relationships in chromatography[J]. J Chromatogr A, 2006, 1126:143-194
|
[29]
|
Jurado E, Bravo V, Vicaria J M, et al. Triolein solubilization using highly biodegradable non-ionic surfactant[J]. Colloid Surf A-Physicochem Eng Asp, 2008, 326:162-168
|
[30]
|
Nakamura S, Nakanishi I, Kitaura K. Binding affinity prediction of non-peptide inhibitors of HIV-1 protease using COMBINE model introduced from peptide inhibitors[J]. Bioorg Med Chem Lett, 2006, 16:6334-6337
|