离子强度对吸附影响机理的研究进展

吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展[J]. 环境化学, 2010, 29(6): 997-1003.
引用本文: 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展[J]. 环境化学, 2010, 29(6): 997-1003.
WU Zhijian, LIU Haining, ZHANG Huifang. RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION[J]. Environmental Chemistry, 2010, 29(6): 997-1003.
Citation: WU Zhijian, LIU Haining, ZHANG Huifang. RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION[J]. Environmental Chemistry, 2010, 29(6): 997-1003.

离子强度对吸附影响机理的研究进展

  • 基金项目:

    福建省自然科学基金(E0710016)

    国家自然科学基金(50972151)

    中国科学院"百人计划"基金(0660011106)资助项目

RESEARCH PROGRESS ON MECHANISMS ABOUT THE EFFECT OF IONIC STRENGTH ON ADSORPTION

  • Fund Project:
  • 摘要: 本文介绍了水溶液中离子或分子的水合、吸附剂表面的双电层模型以及内层与外层表面络合物,在此基础上讨论了离子强度对吸附的影响.一般来说,溶液的离子强度增大时,吸附质与吸附剂之间的静电作用减弱,疏水作用增强,络合作用变化不大.电解质离子能通过与吸附质离子产生离子交换竞争、对吸附质产生盐析或盐溶效应、改变溶液中大分子吸附质分子的大小、与吸附质离子形成离子对等方式影响吸附.
  • 加载中
  • [1] Bourikas K, Kordulis C, Vakros J, et al. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review[J]. Adv Colloid Interface, 2004, 110(3):97-120
    [2] You L J, Wu Z J, Kim T, et al. Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane[J]. J Colloid Interf Sci, 2006, 300(2):526-535
    [3] Ye X S, Wu Z J, Li W, et al. Rubidium and cesium ion adsorption by an ammonium molybdophosphate-calcium alginate composite adsorbent[J]. Colloid Surfaces A, 2009, 342(1/3):76-83
    [4] Wu Z J, Joo H, Lee K. Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel[J]. Chem Eng J, 2005, 112(1/3):227-236
    [5] Wu Z J, Ahn I S, Lin Y X, et al. Methyl orange adsorption by microporous and mesoporous TiO2-SiO2, TiO2-SiO2-Al2O3 composite xerogels[J]. Compos Interface, 2004, 11(2):205-212
    [6] Wu Z J, Xiang H, Kim T, et al. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane[J]. J Colloid Interf Sci, 2006, 304(1):119-124
    [7] Liu H N, Ye X S, Li Q, et al. Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564[J]. Colloid Surfaces A, 2009, 341(1/3):118-126
    [8] Wu Z J, Wu J H, Xiang H, et al. Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents[J]. Colloid Surfaces A, 2006, 279(1/3):167-174
    [9] 游来江, 蒋燕, 向虹,等. 改性介孔无机凝胶的制备及其在溶液中的吸附机理[J]. 材料导报, 2006, 20-Ⅵ(S1):20-23
    [10] Lützenkirchen J. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation[J]. J Colloid Interf Sci, 1997, 195(1):149-155
    [11] Ye X S, Liu T Y, Li Q, et al. Comparison of strontium and calcium adsorption onto composite magnetic particles derived from Fe3O4 and bis(trimethoxysilylpropyl)amine[J]. Colloid Surfaces A, 2008, 330(1):21-27
    [12] Liu H N, You L J, Ye X S, et al. Adsorption kinetics of an organic dye by wet hybrid gel monoliths[J]. J Sol-Gel Sci Technol, 2008, 45(3):279-290
    [13] Richens D T. Ligand substitution reactions at inorganic centers [J]. Chem Rev, 2005, 105(6):1961-2002
    [14] Rahnemaie R, Hiemstra T, van Riemsdijk W H. A new surface structural approach to ion adsorption: tracing the location of electrolyte ions[J]. J Colloid Interf Sci, 2006, 293(2):312-321
    [15] Brown G E, Henrich V E, Casey W H, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms[J]. Chem Rev, 1999, 99(1):77-174
    [16] Davis J A, Leckie J O. Surface ionization and complexation at the oxide/water interface Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions[J]. J Colloid Interf Sci, 1978, 67(1):90-107
    [17] Goldberg S. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption[J]. J Colloid Interf Sci, 2005, 285(2):509-517
    [18] Chen C L, Wang X K. Sorption of Th(IV) to silica as a function of pH, humic/fulvic acid, ionic strength[J]. Appl Radiat Isotopes, 2007, 65(2):155-163
    [19] 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711
    [20] 杨杰文, 蒋新, 徐仁扣,等. 离子强度和SO2-4对土壤吸附Al的影响[J]. 环境化学, 2002, 21(3):230-234
    [21]
    [22] Filius J D, Lumsdon D G, Meeussen J C L, et al. Adsorption of fulvic acid on goethite[J]. Geochim Cosmochim Ac, 2000, 64(1):51-60
    [23] Vilar V J P, Botelho C M S, Boaventura R A R. Influence of pH, ionic strength and temperature on lead biosorption by gelidium and agar extraction algal waste[J]. Process Biochem, 2005, 40(10):3267-3275
    [24] Al-Degs Y S, El-Barghouthi M I, El-Sheikh A H, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes Pigments, 2008, 77:16-23
    [25] 周笑鹏, 白姝, 孙彦. 离子强度和溶质浓度对蛋白质在Q Sepharose FF中吸附动力学的影响[J]. 化工学报, 2005, 56(1):130-134
    [26] Campinas M, Rosa M J. The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC[J]. J Colloid Interf Sci, 2006, 299(2):520-529
    [27] Xu D, Zhou X, Wang X K. Adsorption and desorption of Ni2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences[J]. Appl Clay Sci, 2008, 39(3/4):133-141
    [28] Gu X Y, Evans L J. Modelling the adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto fithian illite[J]. J Colloid Interf Sci, 2007, 307(2):317 325
    [29] Gu X Y, Evans L J. Surface complexation modelling of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) adsorption onto kaolinite[J]. Geochim Cosmochim Ac, 2008, 72(2):267-276
    [30] Guo X Y, Zhang S Z, Shan X Q. Adsorption of metal ions on lignin[J]. J Hazard Mater, 2008, 151(1):134-142
    [31] Zhao D L, Feng S J, Chen C L, et al. Adsorption of thorium(Ⅳ) on MX-80 bentonite: effect of pH, ionic strength and temperature[J]. Appl Clay Sci, 2008, 41(1/2):17-23
    [32] Parolo M E, Savini M C, Vallés J M, et al. Tetracycline adsorption on montmorillonite: pH and ionic strength effects[J]. Appl Clay Sci, 2008, 40(1/4):179-186
    [33] 刘峙嵘, 韦鹏, 曾凯. pH和离子强度对泥煤吸附镍的影响[J]. 煤炭学报, 2007, 32(8):854-859
    [34] Grover P K, Ryall R L. Critical appraisal of salting-out and its implications for chemical and biological sciences[J]. Chem Rev, 2005, 105(1):1-10
    [35] Khraisheh M, Holland C, Creany C, et al. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths[J]. Int J Miner Process, 2005, 75(3/4):197-206
    [36] Eren E, Afsin B. Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces[J]. Dyes Pigments, 2008, 76:220-225
    [37] Chibowski S, Mazur E O, Patkowski J. Influence of the ionic strength on the adsorption properties of the system dispersed aluminium oxide-polyacrylic acid[J]. Mater Chem Phys, 2005, 93(2/3):262-271
    [38] Sennerfors T, Solberg D, Tiberg F. Adsorption of polyelectrolyte-nanoparticle systems on silica: influence of ionic strength[J]. J Colloid Interf Sci, 2002, 254(2):222-226
    [39] Chen J P, Wu S. Simultaneous adsorption of copper ions and humic acid onto an activated carbon[J]. J Colloid Interf Sci, 2004, 280(2):334-342
    [40] Marcus Y, Hefter G. Ion pairing[J]. Chem Rev, 2006, 106(11):4585-4621
    [41] 扬亚提, 张平. 离子强度对恒电荷土壤胶体吸附Cu2+和Pb2+的影响[J]. 环境化学, 2001, 20(6):567-571
    [42] 邹献中, 徐建民, 赵安珍,等. 离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J]. 土壤学报, 2003, 40(6):845-851
    [43] 谢绍俊, 何湘柱, 舒绪刚,等. 纳米ZrO2在液相中分散的研究进展[J]. 材料导报, 2008, 22-Ⅻ:15-18
    [44] Lan Q D, Bassi A S, Zhu J X, et al. A Modified langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity sdsorbents[J]. Chem Eng J, 2001, 81(1/3):179-186
    [45] Greenwood R, Kendall K. Effect of ionic strength on the adsorption of cationic polyelectrolytes onto alumina studied using electroacoustic measurements[J]. Powder Technol, 2000, 113(1/2):148-157
    [46] 李爱民, 冉炜, 代静玉. 天然有机质与矿物间的吸附及其环境效应的研究进展[J]. 岩石矿物学杂志, 2005, 24(6):671-680
    [47] 魏世勇, 谭文峰, 刘凡. 土壤腐殖质-矿物质交互作用的机制及研究进展[J]. 中国土壤与肥料, 2009, (1):1-6
    [48] Raghuraman H, Ganguly S, Chattopadhyay A. Effect of ionic strength on the organization and dynamics of membrane-bound melittin[J]. Biophys Chem, 2006, 124(2):115-124.
    [49] Wu Z J, Lee K. Adsorption mechanisms of mesoporous adsorbents in solutions[J]. Chem Res Chinese U, 2004, 20(2):185-187
    [50] Liu H N, Qing B J, Ye X S, et al. Boron adsorption by composite magnetic particles[J]. Chem Eng J, 2009, 151(1/3):235-240
    [51] Liu H N, Qing B J, Ye X S, et al. Boron adsorption mechanism of a hybrid gel derived from tetraethoxysilane and bis(trimethoxysilylpropyl)amine[J]. Curr Appl Phys, 2009, 9(4):e280-e283
    [52] Liu H N, Ye X S, Li W, et al. Comparison of boric acid adsorption by hybrid gels[J]. Desalination Water Treat, 2009, 2(1/3):185-194
    [53] Wu Z J, You L J, Xiang H, et al. Comparison of dye adsorption by mesoporous hybrid gels: understanding the interactions between dyes and gel surfaces[J]. J Colloid Interf Sci, 2006, 303(2):346-352
    [54] Wu Z J, Ahn I S, Lee C H, et al. Enhancing the organic dye adsorption on porous xerogels[J]. Colloid Surfaces A, 2004, 240(1/3):157-164
    [55] Wu Z J, Joo H, Ahn I S, et al. Organic dye adsorption on mesoporous hybrid gels[J]. Chem Eng J, 2004, 102(3):277-282
    [56] Lozinsky E, Novoselsky A, Glaser R, et al. Effect of ionic strength on the binding of ascorbate to albumin[J]. Biochim Biophys Acta, 2002, 1571(3):239-244
    [57] Torres M F, González J M, Rojas M R, et al. Effect of ionic strength on the rheological behavior of aqueous cetyltrimethylammonium p-toluene sulfonate solutions[J]. J Colloid Interf Sci, 2007, 307(1):221-228
    [58] Jones K L, O'Melia C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength[J]. J Membrane Sci, 2000, 165(1):31-46
    [59] Verm hlen K, Lewandowski H, Narres H D, et al. Adsorption of polyelectrolytes onto oxides-the influence of ionic strength, molar mass, and Ca2+ ions[J]. Colloids Surfaces A, 2000, 163(1):45-53
    [60] 梁锐杰, 陈炳稔. 流动注射分光光度法研究离子强度对活性炭吸附阴离子染料的影响[J]. 离子交换与吸附, 2004, 20(1):54-61
  • 加载中
计量
  • 文章访问数:  10799
  • HTML全文浏览数:  10348
  • PDF下载数:  4170
  • 施引文献:  0
出版历程
  • 收稿日期:  2009-12-24

离子强度对吸附影响机理的研究进展

  • 1.  华侨大学材料科学与工程学院, 泉州, 362021;
  • 2.  中国科学院青海盐湖研究所, 西宁, 810008;
  • 3.  中国科学院研究生院, 北京, 100049
基金项目:

福建省自然科学基金(E0710016)

国家自然科学基金(50972151)

中国科学院"百人计划"基金(0660011106)资助项目

摘要: 本文介绍了水溶液中离子或分子的水合、吸附剂表面的双电层模型以及内层与外层表面络合物,在此基础上讨论了离子强度对吸附的影响.一般来说,溶液的离子强度增大时,吸附质与吸附剂之间的静电作用减弱,疏水作用增强,络合作用变化不大.电解质离子能通过与吸附质离子产生离子交换竞争、对吸附质产生盐析或盐溶效应、改变溶液中大分子吸附质分子的大小、与吸附质离子形成离子对等方式影响吸附.

English Abstract

参考文献 (60)

目录

/

返回文章
返回