水热法制备PbMoO4微晶体及其光催化降解灭幼脲

姚勇, 陈高峰, 刘昌伟, 戴珂, 陈浩, 黄巧云. 水热法制备PbMoO4微晶体及其光催化降解灭幼脲[J]. 环境化学, 2012, 31(5): 641-645.
引用本文: 姚勇, 陈高峰, 刘昌伟, 戴珂, 陈浩, 黄巧云. 水热法制备PbMoO4微晶体及其光催化降解灭幼脲[J]. 环境化学, 2012, 31(5): 641-645.
YAO Yong, CHEN Gaofeng, LIU Changwei, DAI Ke, CHEN Hao, HUANG Qiaoyun. Photocatalytic degradation of chlorbenzuron over PbMoO4 microcrystals[J]. Environmental Chemistry, 2012, 31(5): 641-645.
Citation: YAO Yong, CHEN Gaofeng, LIU Changwei, DAI Ke, CHEN Hao, HUANG Qiaoyun. Photocatalytic degradation of chlorbenzuron over PbMoO4 microcrystals[J]. Environmental Chemistry, 2012, 31(5): 641-645.

水热法制备PbMoO4微晶体及其光催化降解灭幼脲

  • 基金项目:

    高等学校博士学科点专项科研基金(20100146110004)

    湖北省自然科学基金(2011CDB139)

    中央高校基本科研业务费专项资金 (2011QC090)资助.

Photocatalytic degradation of chlorbenzuron over PbMoO4 microcrystals

  • Fund Project:
  • 摘要: 以水热法合成的PbMoO4微晶体为催化剂,考察了反应溶液pH、污染物初始浓度和催化剂用量对光催化降解灭幼脲的影响,研究了光催化降解过程的反应动力学和作用机理.结果表明,最佳反应溶液pH 6.0、污染物初始浓度20 mg·L-1、催化剂用量0.4 g·L-1.反应4 h灭幼脲降解率达99.96%,矿化率达66.4%,降解反应符合一级动力学.通过加入自由基清除剂对比实验发现,PbMoO4微晶体主要通过空穴和·OH的氧化作用使灭幼脲降解,其中空穴起主要作用.
  • 加载中
  • [1] 李云芝,石瑞常,刘文光,等. 灭幼脲对家蚕的毒性试验及中毒症状[J]. 北方蚕业,2008,29(3):18-19
    [2] 王冬,杨弘平. 灭幼脲类杀虫剂对非目标生物的毒性及天敌生物的影响[J]. 沈阳农业大学学报,1999,30(2):166-170
    [3] 曲悦,孟庆婷,王爱香,等. 血液灌流联合血液透析治疗灭幼脲中毒1例[J]. 中国血液净化,2007,6(10):580-580
    [4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(7): 37-38
    [5] Carey J H, J Lawrence, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701
    [6] 陈亚,陈建林,姚三丽,等. Bi2MoO4可见光催化去除4BS染料实验研究[J]. 环境化学,2009,28(6): 809-812
    [7] Shen M, Zhang Q, Chen H, et al. Hydrothermal fabrication of PbMoO4 microcrystals with exposed (001) facets and its enhanced photocatalytic properties[J]. Cryst Eng Comm, 2011, 13(7): 2785-2791
    [8] Sczancoski J, Bomio M, Cavalcante L, et al. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal[J]. The Journal of Physical Chemistry C, 2009, 113(14): 5812-5822
    [9] Zheng Y, Duan F, Wu J, et al. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed (010) surface under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2009, 303(1/2): 9-14
    [10] Xi G, Ye J. Synthesis of bismuth vanadate nanoplates with exposed (001) facets and enhanced visible-light photocatalytic properties[J]. Chemical Communications, 2010, 46(11): 1893-1895
    [11]
    [12] Ohko Y, Fujishima A, Hashimoto K. Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst[J]. The Journal of Physical Chemistry B, 1998, 102(10): 1724-1729
    [13] Rengaraj S, Li X, Tanner P, et al. Photocatalytic degradation of methylparathionAn endocrine disruptor by Bi3+-doped TiO2[J]. Journal of Molecular Catalysis A: Chemical, 2006, 247(1/2): 36-43
    [14] Tamimi M, Qourzal S, Assabbane A, et al. Photocatalytic degradation of pesticide methomyl: determination of the reaction pathway and identification of intermediate products[J]. Photochemical & Photobiological Sciences, 2006, 5(5): 477-482
    [15] Mehrvar M, Anderson W A, Moo-Young M, et al. Non-linear parameter estimation for a dynamic model in photocatalytic reaction engineering[J]. Chemical Engineering Science, 2000, 55(21): 4885-4891
    [16] Chen Y, Yang S, Wang K, et al. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172(1): 47-54
    [17] Richard C, Bosquet F, Pilichowski J F, et al. Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions: effect of substrate concentration on the distribution of products[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108(1): 45-49
  • 加载中
计量
  • 文章访问数:  520
  • HTML全文浏览数:  456
  • PDF下载数:  669
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-09-21

水热法制备PbMoO4微晶体及其光催化降解灭幼脲

  • 1.  华中农业大学资源与环境学院, 武汉, 430070;
  • 2.  华中农业大学理学院, 武汉, 430070
基金项目:

高等学校博士学科点专项科研基金(20100146110004)

湖北省自然科学基金(2011CDB139)

中央高校基本科研业务费专项资金 (2011QC090)资助.

摘要: 以水热法合成的PbMoO4微晶体为催化剂,考察了反应溶液pH、污染物初始浓度和催化剂用量对光催化降解灭幼脲的影响,研究了光催化降解过程的反应动力学和作用机理.结果表明,最佳反应溶液pH 6.0、污染物初始浓度20 mg·L-1、催化剂用量0.4 g·L-1.反应4 h灭幼脲降解率达99.96%,矿化率达66.4%,降解反应符合一级动力学.通过加入自由基清除剂对比实验发现,PbMoO4微晶体主要通过空穴和·OH的氧化作用使灭幼脲降解,其中空穴起主要作用.

English Abstract

参考文献 (17)

目录

/

返回文章
返回