大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例

吕瑶瑶, 余涛, 杨忠芳, 赵万伏, 郭伟, 黄波铭, 李鹏. 大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例[J]. 环境化学, 2012, 31(7): 935-944.
引用本文: 吕瑶瑶, 余涛, 杨忠芳, 赵万伏, 郭伟, 黄波铭, 李鹏. 大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例[J]. 环境化学, 2012, 31(7): 935-944.
LU Yaoyao, YU Tao, YANG Zhongfang, ZHAO Wanfu, GUO Wei, HUANG Boming, LI Peng. The regulation mechanism of selenium distribution in Kaschin-Beck disease area: a case study in Aba area, Sichuan Province[J]. Environmental Chemistry, 2012, 31(7): 935-944.
Citation: LU Yaoyao, YU Tao, YANG Zhongfang, ZHAO Wanfu, GUO Wei, HUANG Boming, LI Peng. The regulation mechanism of selenium distribution in Kaschin-Beck disease area: a case study in Aba area, Sichuan Province[J]. Environmental Chemistry, 2012, 31(7): 935-944.

大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例

  • 基金项目:

    中央高校基本科研业务费(2010ZY54),中国地质调查局项目(1212011121156)联合资助.

The regulation mechanism of selenium distribution in Kaschin-Beck disease area: a case study in Aba area, Sichuan Province

  • Fund Project:
  • 摘要: 分析了阿坝地区的岩石、饮用水、农作物及其根系土中硒的不同存在形态的分布,并结合生物有效性深入研究了硒元素分布与大骨节病病因的联系和调控机理.阿坝地区的环境(岩石、土壤、水)中全硒浓度、农作物中硒的富集系数和水溶性硒占总硒的含量均远低于非病区;硒在氧化还原条件(Eh平均值143.27 mV)和酸碱度(pH 6.518.48)的控制下主要以亚硒酸态的稳定形式存在.元素铝、铁等的富集可能会促进硒的沉淀和络合,制约硒的生物有效利用率,进而导致人体硒摄入不足,最终激发人类微小病毒B19(HPV B19)的毒性,引发大骨节病.通过采取土壤增施硒肥、改善水质、改变膳食结构等方法可以有效地提高环境中硒的水平及其生物有效性,以缓解大骨节病的病情及发病率.
  • 加载中
  • [1] Tan J A, Huang Y J. Selenium in geo-ecosystem and its relation to endemic diseases in China[J]. Water, Air, and Soil Pollution, 1991, 57-58: 59-68
    [2] [7] Bech J, Suarez M, Reverter F, et al. Selenium and other trace elements in phosphate rock of Bayovar-Sechura (Peru)[J]. Journal of Geochemical Exploration, 2010, 107: 136-145
    [3] [8] Dissanayake C B, Chandrajith R. Introduction to Medical Geology, Selenium-A New Entrant to Medical Geology[M]. Springer-Verlag Berlin Heidelberg, 2009:205-222
    [4] [9] Levander Q A. Selenium requirements as discussed in the 1996 Joint FAO/IAWA/WHO expert consultation on trace elements in human nutrition[J]. Biomedical and Environmental Sciences, 1997, 10: 214-219
    [5] [10] Navarro-Alarcon M, Cavrera-Vique C. Selenium in food and the human body: A review[J]. Science of the Total Environment, 2008, 400: 115-141
    [6] [11] Tan J A, Zhu W Y, Wang W Y, et al. Selenium in soil and endemic disease in China[J]. Science of the Total Environment, 2002, 284: 227-235
    [7] [14] Wang D, Alfthan G, Aro A. Determination of total and dissolved selenium species in natural water samples using fluorometry[J]. Environmental Science & Technology, 1994, 28: 383-387
    [8] [17] Gupta U C, Winter K A. Selenium content of soils and crops and the effects of lime and sulfur on plant selenium[J]. Canadian Journal of Soil Science, 1975, 55: 161-166
    [9] [18] Hamilton S J, Lemly A D. Water-sediment controversy in setting environmental standards for selenium[J]. Ecotoxicology and Environmental Safety, 1999, 44: 227-235
    [10] [20] Tamari Y, Ogawa H, Fukumoto Y, et al. Selenium content and its oxidation state in igneous rocks, rock-forming minerals, and a reservoir sediment[J]. The Chemical Society of Japan, 1990, 63: 2631-2638
    [11] [22] Fang W X, Wu P W, Hu R Z, et al. Environmental Se-Mo-B deficiency and its possible effects on crops and Keshan-Beck Disease(KBD) in the Chousang area, Yao County, Shaanxi Province, China[J]. Environmental Geochemistry and Health, 2003, 25: 267-280
    [12] [25] Zasoski R J, Burau R G, Abrams M M. Organic selenium distribution in selected California soils[J]. Soil Science Society of America Journal, 1990, 54(4): 979-982
    [13] [26] Elrashidi M A, Adriano D C, Workman S M, et al. Chemical equilibria of selenium in soil: A theoretical development[J]. Soil Science, 1987, 144(2): 141-151
    [14] [30] Reddy K J, Zhang Z, Blaylock M J, et al. Method for detecting selenium speciation in groundwater[J]. Environmental Science & Technology, 1995, 29: 1754-1759
    [15] [32] Mushak P. Potential impact of acid precipitation on arsenic and selenium[J]. Environmental Health Perspectives, 1985, 63: 105-113
    [16] [33] Seby F, Potin-Gautier M, Giffaut E, et al. A critical review of thermodynamic data for selenium species at 25℃[J]. Chemical Geology, 2001, 171: 173-194
    [17] [34] Neal R H, Sposito G, Holtzclaw K M, et al. Selenite adsorption on alluvial soils: I. Soil composition and pH effects[J]. Soil Science Society of America Journal, 1987, 51(5): 1161-1165
    [18] [36] Essington M E. Estimation of the standard free energy of formation of metal arsenates, selenates and selenites[J]. Soil Science Society of America Journal, 1988, 52: 1574-1579
    [19] [37] Feroci G, Fini A, Badiello R, et al. Interaction between selenium derivatives and heavy metals ions: Cu2+ and Pb2+[J]. Microchemical Journal, 1997, 57: 379-388
    [20] [38] Geering H R, Cary E E, Jones H P, et al. Solubility and redox criteria for the possible forms of selenium in soils[J]. Soil Science Society of America Proceedings, 1968, 32: 35-40
    [21] [39] Sharmasarkar S, Reddy K J, Vance G F. Preliminary quantification of metal selenite solubility in aqueous solutions[J]. Chemical Geology, 1996, 132: 165-170
    [22] [40] Rai D, Felmy A R, Moore D A. The solubility product of crystalline ferric selenite hexahydrate and the complexation constant of FeSeO3+[J]. Journal of Solution Chemical, 1995, 24: 735-752
    [23] [41] Liu C W, Narasimhan T N. Modeling of selenium transport at the Kesterson reservoir, California, USA[J]. Journal of Contaminant Hydrology, 1994, 15: 345-366
    [24] [43] Yang X E, Chen W R, Feng Y. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study[J]. Environ Geochem Health, 2007, 29: 413-428
    [25] [44] Bouis H. Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition[J]. Nutrition Reviews, 1996, 54: 131-137
  • 加载中
计量
  • 文章访问数:  881
  • HTML全文浏览数:  839
  • PDF下载数:  322
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-09-03
吕瑶瑶, 余涛, 杨忠芳, 赵万伏, 郭伟, 黄波铭, 李鹏. 大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例[J]. 环境化学, 2012, 31(7): 935-944.
引用本文: 吕瑶瑶, 余涛, 杨忠芳, 赵万伏, 郭伟, 黄波铭, 李鹏. 大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例[J]. 环境化学, 2012, 31(7): 935-944.
LU Yaoyao, YU Tao, YANG Zhongfang, ZHAO Wanfu, GUO Wei, HUANG Boming, LI Peng. The regulation mechanism of selenium distribution in Kaschin-Beck disease area: a case study in Aba area, Sichuan Province[J]. Environmental Chemistry, 2012, 31(7): 935-944.
Citation: LU Yaoyao, YU Tao, YANG Zhongfang, ZHAO Wanfu, GUO Wei, HUANG Boming, LI Peng. The regulation mechanism of selenium distribution in Kaschin-Beck disease area: a case study in Aba area, Sichuan Province[J]. Environmental Chemistry, 2012, 31(7): 935-944.

大骨节病区硒元素分布的调控机理研究 以四川省阿坝地区为例

  • 1. 中国地质大学地球科学与资源学院, 北京, 100083
基金项目:

中央高校基本科研业务费(2010ZY54),中国地质调查局项目(1212011121156)联合资助.

摘要: 分析了阿坝地区的岩石、饮用水、农作物及其根系土中硒的不同存在形态的分布,并结合生物有效性深入研究了硒元素分布与大骨节病病因的联系和调控机理.阿坝地区的环境(岩石、土壤、水)中全硒浓度、农作物中硒的富集系数和水溶性硒占总硒的含量均远低于非病区;硒在氧化还原条件(Eh平均值143.27 mV)和酸碱度(pH 6.518.48)的控制下主要以亚硒酸态的稳定形式存在.元素铝、铁等的富集可能会促进硒的沉淀和络合,制约硒的生物有效利用率,进而导致人体硒摄入不足,最终激发人类微小病毒B19(HPV B19)的毒性,引发大骨节病.通过采取土壤增施硒肥、改善水质、改变膳食结构等方法可以有效地提高环境中硒的水平及其生物有效性,以缓解大骨节病的病情及发病率.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回