亚热带典型花岗岩小流域径流化学特征与化学风化

黄来明, 张甘霖, 杨金玲. 亚热带典型花岗岩小流域径流化学特征与化学风化[J]. 环境化学, 2012, 31(7): 973-980.
引用本文: 黄来明, 张甘霖, 杨金玲. 亚热带典型花岗岩小流域径流化学特征与化学风化[J]. 环境化学, 2012, 31(7): 973-980.
HUANG Laiming, ZHANG Ganlin, YANG Jinling. Chemical characteristics and chemical weathering of surface runoff in typical granitic watersheds of subtropical China[J]. Environmental Chemistry, 2012, 31(7): 973-980.
Citation: HUANG Laiming, ZHANG Ganlin, YANG Jinling. Chemical characteristics and chemical weathering of surface runoff in typical granitic watersheds of subtropical China[J]. Environmental Chemistry, 2012, 31(7): 973-980.

亚热带典型花岗岩小流域径流化学特征与化学风化

  • 基金项目:

    国家自然科学基金项目(41071141, 40601040)

    国际科学基金项目(C/4077-2)

    中国科学院南京土壤研究所基金项目(ISSASIP0704)资助.

Chemical characteristics and chemical weathering of surface runoff in typical granitic watersheds of subtropical China

  • Fund Project:
  • 摘要: 为了解小流域尺度下生物地球化学过程对径流水体的影响及花岗岩化学风化对CO2的吸收, 对亚热带典型花岗岩区不同利用条件下的2个相邻小流域(F-森林、FA-森林/农田)的地表径流及其常量离子和溶解Si含量进行了连续3年的定期观测和分析. 结果表明, 溶解Si, Na+和HCO3-构成地表径流的主要化学成分, FA流域离子总量高于F流域, 反映了流域内农业活动对其化学径流的贡献. 皖南典型花岗岩小流域(F、FA)径流中Sidiss/Na+和NO3-/SO42-比值均远高于同一生物气候带内富含碳酸盐岩的太湖流域径流中的相应值, 揭示了区域岩性差异和人类活动导致的大气酸沉降组成差异是决定径流化学组成的主要因素. 皖南花岗岩小流域(F、FA)径流化学组分约43%和38%来源于大气降水, 57%和50%来源于岩石风化, FA流域内农业活动对其化学径流的贡献约为12%. 皖南小流域(F、FA)花岗岩化学风化过程对CO2的消耗通量分别为(0.67—0.96)×105 mol·km-2·a-1和(0.64—1.05)×105 mol·km-2·a-1, 远低于同一生物气候带内石灰岩母质流域.
  • 加载中
  • [1] Schaetzl R J, Anderson S. Soils: Genesis and Geomorphology [M]. New York: Cambridge University Press, 2005: 226-238
    [2] Lerman A, Wu L, Mackenzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance [J]. Marine Chemistry, 2007, 106(1-2): 326-350
    [3] White A F. Quantitative approaches to characterizing natural chemical weathering rates // Brantley S L, Kubicji J D, White A F. eds., Kinetics of water-rock interaction [M]. New York: Springer, 2008: 469-543
    [4] Jha, P K, Tiwari J, Singh U K, et al. Chemical weathering and associated CO2 consumption in the Godavari river basin, India [J]. Chemical Geology, 2009, 264(1-4): 364-374
    [5] Goldsmith S T, Carey A E, Johnson B M, et al. Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles [J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 85-103
    [6] Xu Z, Liu C Q. Water geochemistry of the Xijiang Basin rivers, South China: Chemical weathering and CO2 consumption [J]. Applied Geochemistr, 2010: 1603-1614
    [7] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1-4): 3-30
    [8] Wright R F. Influence of acid rain on weathering rates // Lerman A, Meybeck M, eds. Physical and chemical weathering in geochemical cycles [M]. Boston: Kluwer Academic Press, 1988: 181-196
    [9] Velbel M A. Weathering and pedogenesis at the watershed scale: Some recent lessons from studies of acid-deposition effects [J]. Chemical Geology, 1993, 107(3): 337-339
    [10] Guicharnaud R, Paton G I. An evaluation of acid deposition on cation leaching and weathering rates of an Andosol and a Cambisol [J]. Journal of Geochemical Exploration, 2006, 88(1-3): 279-283
    [11] Jassby A D, Reuter J E, Axler R P, et al. Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California-Nevada) [J]. Water Resources Research, 1994, 30(7): 2207-2216
    [12] Komai Y, Umemoto S, Inoue T. Influence of acid deposition on inland water chemistry-A case study from Hyogo Prefecture, Japan [J]. Water, Air, and Soil Pollution, 2001, 130(1): 1535-1540
    [13] Vogt R D, Guo J, Luo J. et al. Water chemistry in forested acid sensitive sites in sub-tropical Asia receiving acid rain and alkaline dust [J]. Applied Geochemistry, 2007, 22(6): 1140-1148
    [14] Chetelat B, Liu C Q, Zhao Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering [J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277
    [15] Jin Z, Zhang F. Seasonal contributions of weathering and atmospheric dust to water chemistry in the Lake Qinghai catchment, NE Tibetan Plateau . American Geophysical Union Fall Meeting Abstracts, 2009: 643
    [16] Li S, Xu Z, Wang H, et al. Geochemistry of the upper Han River basin, China 3. Anthropogenic inputs and chemical weathering to the dissolved load [J]. Chemical Geology, 2009, 264(1-4): 89-95
    [17] Stallard R F, Edmond J M. Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load [J]. Journal of Geophysical Research, 1983, 88(C14): 9671-9688
    [18] Zhang S R, Lu X X, Higgitt D L, et al. Water chemistry of the Zhujiang (Pearl River): Natural processes and anthropogenic influences [J]. Journal of Geophysical Research, 2007, 112, F01011, doi:10.1029/2006JF000493
    [19] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 (第四版) [M]. 北京: 中国环境科学出版社, 2002: 258-284
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学出版社, 1999
    [21] 高全洲, 陶贞. 华南滨海花岗岩秋林的化学风化与化学径流[J]. 中国科学: 地球科学, 2010, 40(6): 758-767
    [22] 叶宏萌, 袁旭音, 葛敏霞, 等. 太湖北部流域水化学特征及其控制因素[J]. 生态环境学报, 2010, 19(1): 23-27
    [23] Gibbs R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088
    [24] 陆渝蓉. 地球水环境学[M]. 南京: 南京大学出版社, 1999
    [25] Meybeck M. Atmospheric inputs and river transport of dissolved substances // Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships . Proceedings of the Hamburg Symposium, 1983: 173-192
    [26] Grosbois C, Négrel P, Grimaud D, et al. An overview of dissolved and suspended matter fluxes in the Loire river basin: natural and anthropogenic inputs [J]. Aquatic Geochemistry, 2001, 7(2): 81-105
    [27] 李甜甜, 季宏兵, 江用彬, 等. 赣江上游河流水化学的影响因素及 DIC 来源[J]. 地理学报, 2007, 62(7): 764-775
    [28] 唐先干, 杨金玲, 张甘霖. 皖南山区降水酸性特征与元素沉降通量[J]. 环境科学, 2009, 30(2): 356-361
    [29] 孙媛媛, 季宏兵, 罗建美, 等. 赣南小流域的水文地球化学特征和主要风化过程[J]. 环境化学, 2006, 25(5): 550-557
    [30] Gao Q, Tao Z, Huang X, et al. Chemical weathering and CO2 consumption in the Xijiang River basin, South China [J]. Geomorphology, 2009, 106(3-4): 324-332
    [31] Xu Z, Liu C Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China [J]. Chemical Geology, 2007, 239(1-2): 83-95
  • 加载中
计量
  • 文章访问数:  1056
  • HTML全文浏览数:  1034
  • PDF下载数:  341
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-10-02
黄来明, 张甘霖, 杨金玲. 亚热带典型花岗岩小流域径流化学特征与化学风化[J]. 环境化学, 2012, 31(7): 973-980.
引用本文: 黄来明, 张甘霖, 杨金玲. 亚热带典型花岗岩小流域径流化学特征与化学风化[J]. 环境化学, 2012, 31(7): 973-980.
HUANG Laiming, ZHANG Ganlin, YANG Jinling. Chemical characteristics and chemical weathering of surface runoff in typical granitic watersheds of subtropical China[J]. Environmental Chemistry, 2012, 31(7): 973-980.
Citation: HUANG Laiming, ZHANG Ganlin, YANG Jinling. Chemical characteristics and chemical weathering of surface runoff in typical granitic watersheds of subtropical China[J]. Environmental Chemistry, 2012, 31(7): 973-980.

亚热带典型花岗岩小流域径流化学特征与化学风化

  • 1.  中国科学院南京土壤研究所, 土壤与农业可持续发展国家重点实验室, 南京, 210008;
  • 2.  中国科学院研究生院, 北京, 100049
基金项目:

国家自然科学基金项目(41071141, 40601040)

国际科学基金项目(C/4077-2)

中国科学院南京土壤研究所基金项目(ISSASIP0704)资助.

摘要: 为了解小流域尺度下生物地球化学过程对径流水体的影响及花岗岩化学风化对CO2的吸收, 对亚热带典型花岗岩区不同利用条件下的2个相邻小流域(F-森林、FA-森林/农田)的地表径流及其常量离子和溶解Si含量进行了连续3年的定期观测和分析. 结果表明, 溶解Si, Na+和HCO3-构成地表径流的主要化学成分, FA流域离子总量高于F流域, 反映了流域内农业活动对其化学径流的贡献. 皖南典型花岗岩小流域(F、FA)径流中Sidiss/Na+和NO3-/SO42-比值均远高于同一生物气候带内富含碳酸盐岩的太湖流域径流中的相应值, 揭示了区域岩性差异和人类活动导致的大气酸沉降组成差异是决定径流化学组成的主要因素. 皖南花岗岩小流域(F、FA)径流化学组分约43%和38%来源于大气降水, 57%和50%来源于岩石风化, FA流域内农业活动对其化学径流的贡献约为12%. 皖南小流域(F、FA)花岗岩化学风化过程对CO2的消耗通量分别为(0.67—0.96)×105 mol·km-2·a-1和(0.64—1.05)×105 mol·km-2·a-1, 远低于同一生物气候带内石灰岩母质流域.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回