茚虫威对映体在土壤中的选择性降解
Enantioselective degradation of indoxacarb enantiomers in soils
-
摘要: 研究了茚虫威在4种不同类型的农田土壤中的降解动态和选择性降解行为.结果表明,添加水平在0.1-5.0 mg·kg-1的条件下,茚虫威对映体在土壤中添加回收率在(78.56±3.16)%-(108.16±5.32)%之间,最低检测限为0.01 mg·kg-1,定量限为0.05 mg·kg-1.茚虫威在土壤中的消解符合一级动力学规律,消解过程受土壤pH值、有机质含量等因素的影响.茚虫威对映体在1#-4#土壤中的降解速率存在明显的差异性,E1的半衰期分别为15.33 d、19.09 d、10.61 d、11.40 d,E2的半衰期分别为15.44 d、15.61 d、8.58 d、11.13 d,降解快慢顺序为:3# > 4# > 1# > 2#,表明茚虫威在偏碱性的土壤中的降解速率要快于在酸性土壤中,且对映体的半衰期差异在有机质含量较高的土壤中表现得更加明显;对映体分数EF值(enantiomer fraction)表明茚虫威对映体在4种供试土壤中除了1#土壤外均存在明显的立体选择性降解.Abstract: The dissipation dynamic and enantioselective degradation of indoxacarb in soils were studied by incubation with racemic indoxacarb in four agricultural soils. When the concentration of indoxacarb was fortified from 0.1 to 5.0 mg穔g-1, the average recoveries varied from (78.56±3.16)% to (108.16±5.32)%, respectively. The limit of detection of indoxacarb in the test soils was 0.01 mg穔g-1, and the limit of quantitation was 0.05 mg穔g-1. The dissipation of indoxacarb enantiomers in the soils followed pseudo-first-order kinetic. The dissipation rate was greatly influenced by pH and organic matter content of each soil. The results showed that the degradation rate of indoxacarb was different in soils 1#-4#. The half-time of the first enantiomer was 15.33 d, 19.09 d, 10.61 d, 11.40 d, and the half-time of the second enantiomer was 15.44 d, 15.61 d, 8.58 d, 11.13 d. The dissipation rate in the descending order was 3# > 4# > 1# > 2#. The results indicated a faster dissipation rate for indoxacarb in alkaline soil than in acidic soil, and there was a bigger difference on half-time period of indoxacarb enantiomers in soil of high organic matter. The EF value indicated that the stereoselective degradation led to significant difference between two enantiomers in the test soils except 1#.
-
Key words:
- chiral separation /
- indoxacarb /
- enantioselectivity /
- degradation /
- half-time
-
-
[1] Liu W P, Gan J Y, Schlenk D, et al. Enantioselectivity in environmental safety of current chiral insecticides[J]. PNAS, 2005,102: 701-706 [2] Sekhon B S. Chiral pesticides[J]. J Pestic Sci, 2009, 34: 1-12 [3] Lewis D L, Garrison A W, Wommack K E, et al. Influence of environmental changes on degradation of chiral pollutants in soils[J]. Nature, 1999, 401: 898-901 [4] Li Z Y, Zhang Z C, Zhou Q L, et al. Fast and precise determination of phenthoate and its enantiomeric ratio in soil by the matrix solid-phase dispersion method and liquid chromatography[J]. Journal of Chromatography A, 2002, 977: 17-25 [5] Qin S J, Liu W P, Gan J, et al. Enantioselective degradation and chiral stability of pyrethroids in soil and sediment[J]. J Agric Food Chem, 2006, 54: 5040-5045 [6] Qin S J, Gan J. Enantiomeric differences in permethrin degradation pathways in soil and sediment[J]. J Agric Food Chem, 2006, 54: 9145-9151 [7] Kure-karakus P B, Stroud J, Jones K C, et al. Enantioselective degradation of organochlorine pesticides in background soils: variability in field and laboratory studies[J]. Environ Sci Technol, 2007, 41: 4965-4971 [8] Ma Y, Xu C, Liu W P, et al. Enantioselective separation and degradation of herbicide dichlorprop methyl in sediment[J]. Chirality, 2009, 21: 480-483 [9] 刘维屏,许惠庆,俞康宁,等. 禾草灵在大田系统中迁移、降解动态规律研究[J]. 环境化学, 1991, 10(2): 48-54 [10] 宋立岩, 花日茂, 赵由才, 等. 精噁唑禾草灵微生物降解的初步研究[J]. 环境化学, 2005, 24(2): 193-196 [11] 丁宁, 孟庆伟, 赵伟杰, 等. 噁二嗪类杀虫剂茚虫威的研究进展[J]. 农药学学报, 2005, 7(2): 97-103 [12] Mccann S F, Annis G D, Shapiro R, et al. The discovery of indoxacarb: oxadiazines as a new class of pyrazoline-type insecticides[J]. Pest Manag Sci, 2001, 57: 153-164 [13] Smyser B P. Anaerobic aquatic metabolism of DPX-JW062 and DPX-JW062, a racemic (50: 50) mixture of DPX-KN128 and IN-KN127. DuPont Report No. AMR 3236-94, Revision No.2. E. I. duPont de Nemours and Company, Wilmington, DE, 2002 [14] 董丰收,郑永权,沙宪英,等. 茚虫威15%悬浮剂在棉花和土壤中的残留动态研究[J]. 农业环境科学学报, 2005, 24 (5):1027-1031 [15] 李畅方,何强,徐伟松,等. 茚虫威在甘蓝和土壤中的残留量及消解动态研究[J]. 农药科学与管理, 2005, 26 (12): 8-11 [16] 周凤霞,李培. 茚虫威在土壤中的消解动态研究[J]. 环境科学与管理, 2008, 33(10): 58-61 [17] Mojtahedi M M, Chalavi S, Ghassempour A, et al. Chiral separation of three agrochemical toxins enantiomers by high-performance liquid chromatography on a vancomycin crystalline degradation products-chiral stationary phase[J]. Biomed Chromatogr, 2007, 21(3): 234-240 [18] Saito K, Yato M, Ito T, et al. Verification of the need for optical purity measurement of chiral pesticide standards as agricultural reference materials[J]. Accred Qual Assur, 2008, 13(7): 373-379 [19] 董丰收, 郑永权, 李重九, 等. 茚虫威在直链淀粉手性固定相上的对映体分离研究[J]. 化学试剂, 2008, 30(7): 517-518 ,521
[20] Cheng L, Dong F S, Liu X G, et al. Determination of indoxacarb enantiomer residues in vegetables, fruits, and soil by high-performance liquid chromatography[J]. J Aoac Int, 2010, 93: 1007-1012 [21] 袁蕾, 王会利, 李建中, 等. 阿维菌素在油菜和土壤中残留及降解行为研究[J]. 环境化学, 2011, 30(2): 490-494 [22] 国家环境保护局. 化学农药环境安全评价试验准则[S]. 北京: 中国环境科学出版社, 1989: 1-25 -

计量
- 文章访问数: 781
- HTML全文浏览数: 734
- PDF下载数: 360
- 施引文献: 0