[1]
|
汪泉观,纪云晶,常元勋. 环境化学毒物防治手册[M]. 北京: 化学工业出版社, 2004: 559-562
|
[2]
|
Federal Register. National primary and secondary drinking water regulations[J]. Fed Reg, 1989, 54: 22062-22160
|
[3]
|
Morioka Y. Control of groundwater quality contaminated with toxic chemicals[J]. J Jan Soc Water Environ, 1996, 19: 529-533
|
[4]
|
陈翠柏,杨琦,沈照理. 地下水三氯乙烯(TCE)生物修复的研究进展[J]. 华东地质学院学报, 2003, 26(1): 10-14
|
[5]
|
孟凡生,王业耀,汪春香,等. 三氯乙烯污染地下水的原位修复技术研究及应用现状[J]. 四川环境, 2005, 24(3): 70-73
|
[6]
|
Bruell C J, Segall B A, Walsh M T. Eletroosmotic removal of gasoline hydrocarbons and TCE from clay [J]. Environmental Engineering, 1992, 118 (1): 68-83
|
[7]
|
周友亚,贺晓珍,李发生,等.气相抽提去除红壤中挥发性有机污染物的去污机理探讨[J]. 环境化学, 2010, 29(1): 39-43
|
[8]
|
赵留辉,马娟,杨建涛,等. 浅析石油污染土壤的处理技术[J]. 甘肃科技, 2003, 19(10): 36-37
|
[9]
|
孙铁珩,李培军,周启星,等. 土壤污染形成机理与修复技术[M]. 北京:科学出版社, 2005, 255-256
|
[10]
|
李金惠,聂永丰,马海斌,等. 油污染土壤气体抽排去污模型及影响因素[J]. 环境科学, 2002, 23(1): 92-96
|
[11]
|
殷甫祥,张胜田,赵欣,等.气相抽提法(SVE)去除土壤中挥发性有机污染物的实验研究[J]. 环境科学, 2011, 32(5): 1454-1461
|
[12]
|
Hoier C K, Sonnenborg T O, Jensen K H, et al. Experimental investigation of pneumatic soil vapor extraction[J]. Journal of Contaminant Hydrology, 2007, 89(1/2): 29-47
|
[13]
|
Couffin N, Cabassud C, Lahoussine-Turcaud V. A new process to remove halogenated VOCs for drinking water production: vacuum membrane distillation[J]. Desalination, 1998, 117(1/3): 233-245
|
[14]
|
Shah M R, Noble R D, Clough D E. Pervaporation-air stripping hybrid process for removal of VOCs from groundwater[J]. Journal of Membrane Science, 2004, 241 (1/2): 257-263
|
[15]
|
高霏,刘菲,陈鸿汗. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829
|
[16]
|
Loomer D B, Tom A Al, Banks V J, et al. Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4[J]. Environmental Science & Technology, 2010, 44(15): 5934-5939
|
[17]
|
Yan Y E, Schwartz F W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate [J]. Journal of Contaminant Hydrology, 1999, 37(4): 343-365
|
[18]
|
田璐,杨琦,尚海涛,等. 高锰酸钾去除水中的TCE的研究[J]. 环境科学, 2009, 30(9): 2570-2574
|
[19]
|
曹玉彬. 高锰酸钾氧化处理三氯乙烯污染地下水实验研究[J]. 环境科技, 2010, 23(6): 11-13
|
[20]
|
Kao C M, Huang K D, Wang J Y, et al. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study[J]. Journal of Hazardous Materials, 2008, 153(3): 919-927
|
[21]
|
Harendra S, Vipulanandan C. Effects of Surfactants on solubilization of perchloroethylene (PCE) and trichloroethylene (TCE)[J]. Industrial & Engineering Chemistry Research, 2011, 50(9): 5831-5837
|
[22]
|
Li Z H, Hong H L. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation[J]. Water Research, 2008, 42(3): 605-614
|
[23]
|
Tsai T T, Kao C M, Yeh T Y, et al. Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater[J]. Journal of Hazardous Materials, 2009, 161(1): 111-119
|
[24]
|
Alcántara-Garduoa M E, Okudab T, Nishijima W, et al. Ozonation of trichloroethylene in acetic acid solution with soluble and solid humic acid[J]. Journal of Hazardous Materials, 2008, 160(2/3): 662-667
|
[25]
|
Fenton H J H. Oxidation of tartaric acid in presence of iron [J]. Journal of the Chemical Society Transactions, 1894, 65: 889-910
|
[26]
|
Lee Y, Lee W. Degradation of trichloroethylene by Fe(Ⅱ) chelated with cross-linked chitosan in a modified Fenton reaction[J]. Journal of Hazardous Materials, 2010, 178(1/3): 187-193
|
[27]
|
Watts R J, Udell M D, Rauch P A. Treatment of pentachlorophenol contaminated soil using Fenton's reagent [J]. Hazardous Waste and Hazardous Materials, 1990, 7(4): 335-345
|
[28]
|
Che H, Bae S, Lee W.Degradation of trichloroethylene by Fenton reaction in pyrite suspension[J].Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361
|
[29]
|
Tsai T T, Kao C M, Wang J Y. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation[J]. Chemosphere, 2011, 83(5): 687-692
|
[30]
|
蔡信德,吴嘉怡,杜文婷, 等. 过硫酸钠对砂壤土中三氯乙烯的氧化研究[J]. 中国环境科学, 2012,35(1): 1263-1267
|
[31]
|
Liang C, Wang Z S, Bruell C J.Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(2): 106-113
|
[32]
|
Liang C J, Lee I L. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contaminationA proof of concept study[J]. Journal of Contaminant Hydrology, 2008, 100(3/4): 91-100
|
[33]
|
Tsai T T, Kao C M, Hong A. Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidationA laboratory feasibility study[J]. Journal of Hazardous Materials, 2009, 171(1/3): 571-576
|
[34]
|
Liang C, Liang C P, Chen C C. pH dependence of persulfate activation by EDTA/Fe(Ⅲ) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4): 173-182
|
[35]
|
Yang G C C, Yeh C F. Enhanced nano-Fe3O4/S2O2-8 oxidation of trichloroethylene in a clayey soil by electrokinetics[J]. Separation and Purification Technology, 2011, 79(2): 264-271
|
[36]
|
顾晓清,马小东,孙红文. 氧化锌表面的 Fe(Ⅱ)对三氯乙烯的还原脱氯研究[J]. 生态环境, 2007, 16(4): 1180-1183
|
[37]
|
Sweeny K H. American water works as sociation research foundation[J]. Denver, Water Reuse Symposium, 1979, 2: 1487
|
[38]
|
Gillham R W, O'Hannesin S F. Enhanced degradation of halogenated aliphatics by Zero-Valen iron[J]. GroundWater, 1994, 32(6): 958- 967
|
[39]
|
蔡静,单爱琴,李海花,等. 零价铁去除三氯乙烯研究[J]. 安徽农业科学,2010,38(19): 10209-10211
|
[40]
|
Sakulchaicharoen N, O'Carroll D M, Herrera J E. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 117-127
|
[41]
|
Kim H, Hong H J, Jung J, et al. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead[J]. Journal of Hazardous Materials, 2010, 176(1/3): 1038-1043
|
[42]
|
Zhang M, He F, Zhao D, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants,and natural organic matter[J]. Water Research, 2011, 45(7): 2401-2414
|
[43]
|
Dibble L A, Raupp G B. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide[J]. Catal Lett, 1990, 4(4/6): 345
|
[44]
|
李功虎,马胡兰,安纬珠.纳米二氧化钛气相光催化降解三氯乙烯[J].催化学报, 2000, 21(4): 350-354
|
[45]
|
朱昕昊,陆永琪,朱天乐,等.TiO2薄膜气相光催化氧化低浓度三氯甲烷和三氯乙烯的研究[J]. 环境污染治理技术与设备, 2003, 4(3): 26-29
|
[46]
|
郑宜,李旦振,付贤智.水蒸气对有机污染物微波光催化氧化反应的影响[J].催化学报, 2001, 22(2): 165-167
|
[47]
|
|
[48]
|
曹雪莲,惠泉,刘均洪. 转基因植物修复有机污染物的进展[J]. 环境保护科学, 2008, 34(3): 71-74
|
[49]
|
Burken J G, Schnoor J L. Uptake and metabolism of atrazine by poplar trees[J]. Environmental Science & Technology, 1997, 31 (1): 399-406
|
[50]
|
Weyens N, Truyens S, Dupae J, et al. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings[J]. Environmental Pollution, 2010, 158(9): 2915-2919
|
[51]
|
Weyens N, Croes S, Dupae J, et al. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination[J]. Environmental Pollution, 2010, 158(7): 2422-2427
|
[52]
|
Pant P, Pant S. A review: Advances in microbial remediation of trichloroethylene (TCE) [J]. Environmental Sciences, 2010, 22(1): 116-126
|
[53]
|
胡海珠,毛晓敏. 地下水高浓度三氯乙烯厌氧生物降解的进展[J]. 科技导报, 2010, 28(21): 112-117
|
[54]
|
Fan S, Scow K M. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil[J]. Applied Environmental Microbiology, 1993, 59(6): 1911-1918
|
[55]
|
隋红,李鑫钢,段云霞,等. 三氯乙烯共代谢生物降解研究[J]. 农业环境科学学报, 2004, 23(1): 170-173
|
[56]
|
Han Y L, Tom Kuo T M C,Tseng I C, et al. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene[J]. Journal of Hazardous Materials, 2007,148(3): 583-591
|
[57]
|
陈翠柏,杨琦,沈照理. 地下水三氯乙烯(TCE)生物修复的研究进展[J]. 华东地质学院学报, 2003, 26(1): 10-14
|
[58]
|
Norris R D, Matthew J E. Handbook of Bioremediation[M]. Florida: Lewis Publishers, 1994: 87-116
|
[59]
|
Olaniran A O, Pillay D, Pillay B. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa[J]. Chemosphere, 2008, 73(1): 24-29
|
[60]
|
Maymo-Gatell X, Chien Y, Gossett J M, et al. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane[J]. Science,1997,276(5318): 1568-1571
|
[61]
|
Maymo-Gatell X, Anguish T, Zinder S H. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethanogenes 195[J]. Applied Environmental Microbiology, 1999, 65(7): 3108-3113
|
[62]
|
Seshadri R, Adrian L, Fouts D E, et al. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes[J]. Science,2005,307(5706):105-108
|
[63]
|
修宗明,李铁龙,金朝晖. 纳米铁为脱氯菌供电降解三氯乙烯实验研究[J]. 环境科学,2009, 30(6): 1791-1796
|
[64]
|
Hood E D, Major D W, Quinn J W, et al. Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station[J]. Ground Water Monitoring & Remediation, 2008, 28(2): 98-107
|
[65]
|
Kane A, Vidumsky J, Major D W, et al. In-situ bioremediation of a chlorinated solvent residual source in unconsolidated sediments and bedrock using bioaugmentation[M]. Contaminated Soils, Sediments and Water, 2005: 45-55
|
[66]
|
Imfeld G, Nijenhuis I, Nikolausz M, et al. Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system[J]. Water Research, 2008, 42(4/5): 871-882
|
[67]
|
Lu X, Wilson J T, Shen H, et al. Remediation of TCE-contaminated groundwater by a permeable reactive barrier filled with plant mulch (Biowall)[J]. Environmental Science and Health Part A, 2008, 43(1): 24-35
|