煤化工中焦化废水的污染、控制原理与技术应用

韦朝海. 煤化工中焦化废水的污染、控制原理与技术应用[J]. 环境化学, 2012, 31(10): 1465-1472.
引用本文: 韦朝海. 煤化工中焦化废水的污染、控制原理与技术应用[J]. 环境化学, 2012, 31(10): 1465-1472.
WEI Chaohai. Pollution control principles and technology applications in the treatment of coking wastewater from coal chemical industry[J]. Environmental Chemistry, 2012, 31(10): 1465-1472.
Citation: WEI Chaohai. Pollution control principles and technology applications in the treatment of coking wastewater from coal chemical industry[J]. Environmental Chemistry, 2012, 31(10): 1465-1472.

煤化工中焦化废水的污染、控制原理与技术应用

  • 基金项目:

    国家自然科学基金重点项目(21037001)

    "

    十一五"

    国家科技支撑计划重点项目(008BAC32B06-1)

    国家高技术研究发展计划项目(2009AA06Z319)

    华南理工大学中央高校基本科研业务经费 (2011ZP0006)资助.

Pollution control principles and technology applications in the treatment of coking wastewater from coal chemical industry

  • Fund Project:
  • 摘要: 煤化工废水成分复杂,毒性大,以焦化废水最具代表性,研究废水中典型污染物的控制原理很有必要.从煤制气、煤制焦、煤制油及煤制甲醇4个方面介绍了煤化工过程在能源与经济方面上的地位与特点,分析了煤化工过程水污染特征与水污染控制的共性问题,对水质结构的描述及其变化过程的理解是水处理工艺选择的科学基础.固相微萃取(SPME)与GC-MS结合的分析手段能够快速、准确地获得废水水质的化学结构特征及浓度水平的信息,基于元素分析可以获知典型污染物的转化与归趋;结合废水组成、反应、降解与转移的定量考察,可以深入了解废水的生成机制及其处理过程的变化;根据污染物特征选择有效的化学原理如吸附与催化氧化的结合,根据惰性污染物的存在选择生物电化学催化分解,基于协同降解或共基质降解,培养功能微生物,构建基因工程菌,开发功能微生物的应用技术.上述可归纳为根据不同污染物的性质提出相适应的去除原理,系统考虑废水的成分特征、化学转化、生物转化以及相互协调优化,追求更高水平上实现污染物转化与降解的技术目标.最后,根据煤化工焦化废水处理目前暴露的缺陷,提出了未来需要加强研究的若干关键问题.
  • 加载中
  • [1] Ghosh R. Enhancement of membrane permeability by gas-sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: Role of module design[J]. Journal of Membrane Science, 2006,274(1/2):73-82
    [2] [3] Oleszek-Kudlak S, Shibata E, Nakamura T. Solubilities of selected PCDDs and PCDFs in water and various chloride solutions[J]. J Chem Eng Data, 2007,52(5):1824-1829
    [3] [4] Fiedler H. Dioxins and Furans. The Handbook of Environmental Chemistry[M]. New York: Springer Berlin Heidelberg, 2003
    [4] [5] Ma W, Li Y, Qi H, et al. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China[J]. Chemosphere,2010,79(4):441-447
    [5] [6] Lüers F, Ten Hulscher T. Temperature effect on the partitioning of polycyclic aromatic hydrocarbons between natural organic carbon and water[J]. Chemosphere, 1996,33(4):643-657
    [6] [7] Zhou W, Zhai Z, Wang Z, et al. Estimation of n-octanol/water partition coefficients (Kow) of all PCB congeners by density functional theory[J]. Journal of Molecular Structure: THEOCHEM, 2005,755(1/3):137-145
    [7] [8] Hansen B, Paya-Perez A, Rahman M, et al. QSARs for KOW and KOC of PCB congeners: a critical examination of data, assumptions and statistical approaches[J]. Chemosphere, 1999,39(13):2209-2228
    [8] [9] Houde M, Martin J, Letcher R, et al. Biological monitoring of polyfluoroalkyl substances: a review[J]. Environ Sci Technol, 2006,40(11):3463-3473
    [9] [10] Chen C, Huang J, Chen S. Assessment of the microbial toxicity test and its application for industrial wastewaters[J]. Water Science and Technology, 1997, 36(12):375-382
    [10] [11] Ouyang Gangfeng, Vuckovic Dajana, Pawliszyn Janusz.Nondestructive sampling of living systems using in vivo solid-phase microextraction[J]. Chem Rev, 2011, 111, 2784-2814
    [11] [16] Zhang Xiaoxuan, Wei Chaohai, He Qincong, et al. Enrichment of chlorobenzene and o-nitrochlorobenzene on biomimetic adsorbent prepared by poly-3-hydroxybutyrate (PHB) [J]. Journal of Hazardous Materials, 2010, 177:508-515
    [12] [17] Siskin M, Katritzky A. Reactivity of organic compounds in hot water: Geochemical and technological implications [J]. Science, 1991, 254: 231-237
    [13] [18] Poliakoff M, King P. Phenomenal fluids [J]. Nature, 2001, 412: 125-125
    [14] [19] Wang Chuan B, Zhang Wei X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environ Sci Technol, 1997, 31(7): 2154-2156
    [15] [20] Yak H K, Wenclawiak B W, Cheng I F, et al. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water[J]. Environ Sci Technol, 1999, 33(8): 1307-1310
    [16] [21] Wei Guang-Tao, Wei Chao-Hai, He Feng-Mei, et al. Dechlorination of chlorobenzene in subcritical water with Fe/ZrO2, Ni/ZrO2 and Cu/ZrO2[J]. Journal of Environmental Monitoring, 2009, 11: 678-683
    [17] [22] Wei Guang-Tao,Wei Chao-Hai,He Feng-Mei,et al. A novel catalyst for reductive dechlorination of chlorobenzene in subcritical water: Bifunctional Fe/ZrO2[J]. Surface Review and Letters, 2009, 16(4): 688-693
    [18] [23] Wu W, Jain M, Zeikus J. Formation of fatty acid-degrading, anaerobic granules by defined species[J]. Applied and Environmental Microbiology, 1996,62(6):2037-2044
    [19] [24] Seeger M, Timmis K, Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400[J]. Applied and Environmental Microbiology, 1995,61(7):2654-2658
  • 加载中
计量
  • 文章访问数:  981
  • HTML全文浏览数:  923
  • PDF下载数:  2112
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-20
韦朝海. 煤化工中焦化废水的污染、控制原理与技术应用[J]. 环境化学, 2012, 31(10): 1465-1472.
引用本文: 韦朝海. 煤化工中焦化废水的污染、控制原理与技术应用[J]. 环境化学, 2012, 31(10): 1465-1472.
WEI Chaohai. Pollution control principles and technology applications in the treatment of coking wastewater from coal chemical industry[J]. Environmental Chemistry, 2012, 31(10): 1465-1472.
Citation: WEI Chaohai. Pollution control principles and technology applications in the treatment of coking wastewater from coal chemical industry[J]. Environmental Chemistry, 2012, 31(10): 1465-1472.

煤化工中焦化废水的污染、控制原理与技术应用

  • 1. 华南理工大学环境科学与工程学院,工业聚集区污染控制与生态修复教育部重点实验室, 污染控制与生态修复广东省普通高等学校重点实验室, 广州, 510006
基金项目:

国家自然科学基金重点项目(21037001)

"

十一五"

国家科技支撑计划重点项目(008BAC32B06-1)

国家高技术研究发展计划项目(2009AA06Z319)

华南理工大学中央高校基本科研业务经费 (2011ZP0006)资助.

摘要: 煤化工废水成分复杂,毒性大,以焦化废水最具代表性,研究废水中典型污染物的控制原理很有必要.从煤制气、煤制焦、煤制油及煤制甲醇4个方面介绍了煤化工过程在能源与经济方面上的地位与特点,分析了煤化工过程水污染特征与水污染控制的共性问题,对水质结构的描述及其变化过程的理解是水处理工艺选择的科学基础.固相微萃取(SPME)与GC-MS结合的分析手段能够快速、准确地获得废水水质的化学结构特征及浓度水平的信息,基于元素分析可以获知典型污染物的转化与归趋;结合废水组成、反应、降解与转移的定量考察,可以深入了解废水的生成机制及其处理过程的变化;根据污染物特征选择有效的化学原理如吸附与催化氧化的结合,根据惰性污染物的存在选择生物电化学催化分解,基于协同降解或共基质降解,培养功能微生物,构建基因工程菌,开发功能微生物的应用技术.上述可归纳为根据不同污染物的性质提出相适应的去除原理,系统考虑废水的成分特征、化学转化、生物转化以及相互协调优化,追求更高水平上实现污染物转化与降解的技术目标.最后,根据煤化工焦化废水处理目前暴露的缺陷,提出了未来需要加强研究的若干关键问题.

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回