福建某钢铁厂区域表层土壤PAHs污染特征与风险分析

侯艳伟, 张又弛. 福建某钢铁厂区域表层土壤PAHs污染特征与风险分析[J]. 环境化学, 2012, 31(10): 1542-1548.
引用本文: 侯艳伟, 张又弛. 福建某钢铁厂区域表层土壤PAHs污染特征与风险分析[J]. 环境化学, 2012, 31(10): 1542-1548.
HOU Yanwei, ZHANG Youchi. Assessment on contamination and risk of polycyclic aromatic hydrocarbons in soils in area of steel works in Fujian Province[J]. Environmental Chemistry, 2012, 31(10): 1542-1548.
Citation: HOU Yanwei, ZHANG Youchi. Assessment on contamination and risk of polycyclic aromatic hydrocarbons in soils in area of steel works in Fujian Province[J]. Environmental Chemistry, 2012, 31(10): 1542-1548.

福建某钢铁厂区域表层土壤PAHs污染特征与风险分析

  • 基金项目:

    中国科学院知识创新工程重要方向项目(KZCX2-YW-Q02-04)

    福建省自然科学基金项目(2012J01177)

    中央高校基本科研业务费专项资金(11HZR07)

    云南省社会发展科技计划(社会事业发展专项)(2010CA001)资助.

Assessment on contamination and risk of polycyclic aromatic hydrocarbons in soils in area of steel works in Fujian Province

  • Fund Project:
  • 摘要: 采用气相色谱-质谱联用仪(GC-MS)分析福建某钢铁厂区域不同功能区表层土壤中16种优控PAHs含量,并对其组成、来源和环境风险进行了分析.结果表明,各样点土壤中16种优控PAHs的检出率达到100%,其总含量范围为68.7—18100.6 μg·kg-1,平均值为5084.5 μg·kg-1.7个功能区土壤中PAHs主要以高环(4—6环)为主.异构体比值法分析表明该钢铁厂区域各功能区土壤中PAHs主要来源于石油燃料的燃烧.土样中16种PAHs的TEQBaP为6.01—3110 μg·kg-1,平均值为852 μg·kg-1,7种致癌PAHs对16种PAHs总TEQBaP的贡献达到99.1%,其中BaP和DBA对总TEQBaP的贡献值较大,分别达到61.6%和14.5%.除郊区外,其它6个功能区土壤样品10种PAHs的总TEQBaP都超过荷兰土壤标准目标参考值,表明该钢铁厂区域多数功能区表层土壤均存在潜在的环境风险.
  • 加载中
  • [1] Durant J L, Busby W F, Lafleur A L, et al. Human cellmutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols[J]. Mutation Research, 1996, 371: 123-157
    [2] Santodonato J. Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: Relationship to carcinogenicity[J]. Chemosphere, 1997, 34: 835-848
    [3] Aamot E, Steinnes E, Schmid R. Polycyclic aromatichydrocarbons in Norwegian forest soils: Impact of long range atmospheric transport[J]. Environmental Pollution, 1996, 92(3): 275-280
    [4] Sun C G, Snape C E, McRae C, et a1. Resolving coal and petroleum-derived polycyclic hydrocarbons (PAHs) in some contaminated land samples using compound-specific stable carbon isotope ratio measurements in conjunction with molecular fingerprints[J]. Fuel, 2003, 82: 2017-2023
    [5] Sabbah I, Rebhun M, Gerstl Z. An indpendent prediction of the effect of dissolved organic matter on the transport of polycyclic aromatic hydrocarbons[J]. Journal of Contaminant Hydrology, 2004, 75: 55-70
    [6]
    [7] 王学彤, 贾英, 孙阳昭, 等. 典型污染区农业土壤中PAHs的分布、来源及生态风险[J]. 环境科学学报, 2009, 29(11): 2433-2439
    [8] 廖书林, 郎印海, 王延松. 辽河口湿地土壤多环芳烃的分布与生态风险评价[J]. 环境化学, 2011, 30(2): 423-429
    [9] 姜林, 钟茂生, 张丹. 污染场地土壤多环芳烃(PAHs)生物可利用浓度的健康风险评价方法[J]. 生态环境学报, 2011, 20(6/7): 1168

    -1175

    [10] 葛晓立, 严加永, 焦杏春, 等. 徐州市区多环芳烃的环境地球化学特征[J]. 物探与化探, 2008, 32(6): 622-626
    [11] 沈菲, 朱利中. 钢铁工业区附近农田蔬菜PAHs的浓度水平及分布[J]. 环境科学, 2007, 28(3): 669-672
    [12] VROM. Environmental quality objectives in the Netherlands: A review of environmental quality objectives and their policy framework in the Netherlands [M]. The Hague: Ministry of Housing, Spatial Planning and Environment, 1994
    [13] Tsai P J, Shih T S, Chen H L, et al. Assessing and predicting the exposure of PAHs and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers[J]. Atmospheric Environment, 2004, 38: 333-343
    [14] Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil:Contamination and profiles[J]. Environmental Pollution, 1999, 105: 67-74
    [15] Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11: 121-127
    [16] 卜庆伟, 张枝焕, 夏星辉. 分子标志物参数在识别土壤多环芳烃(PAHs)来源中的应用[J]. 土壤通报, 2008, 39: 1204-1209
    [17] Readman J W, Fillmann G, Tolosa I, et al. Petroleum and PAH contamination of the Black Sea[J]. Marine Pollution Billetin, 2002, 44: 48-62
    [18] Zhang H Y, Andrews A R J, Rews. Preliminary studies of a fast screening method for polycyclic aronatic hydrocarbons in soil by using solvent microextraction-gas chromatography[J]. Journal of Environmental Monitoring, 2000, 2(6): 656-661
    [19] 徐绍箐, 马启敏, 李泽利, 等. 锦州湾表层沉积物中多环芳烃测定与生态风险评价[J]. 环境化学, 2011, 30(11): 1900-1905
    [20] 庄婉娥, 汪厦霞, 姚文松, 等. 泉州湾表层沉积物中多环芳烃的含量、分布特征及污染来源[J]. 环境化学, 2011,30(5):928-934
    [21] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33: 489-515
    [22] Neff J M, Burns W A. Estimation of polycyclic aromatic hydrocarbon concentrations in the water column based on tissue residues in mussels and salmon: An equilibrium partitioning approach [J]. Environmental Toxicology and Chemistry, 1996, 15: 2240-2253
    [23] Qiao M, Wang C X, Huang S B, et al. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China[J]. Environment International, 2006, 32: 28-33
    [24] Agarwal T, Khillare P S, Shridhar V, et al. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 2008, 163: 1033-1039
  • 加载中
计量
  • 文章访问数:  804
  • HTML全文浏览数:  640
  • PDF下载数:  423
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-08
侯艳伟, 张又弛. 福建某钢铁厂区域表层土壤PAHs污染特征与风险分析[J]. 环境化学, 2012, 31(10): 1542-1548.
引用本文: 侯艳伟, 张又弛. 福建某钢铁厂区域表层土壤PAHs污染特征与风险分析[J]. 环境化学, 2012, 31(10): 1542-1548.
HOU Yanwei, ZHANG Youchi. Assessment on contamination and risk of polycyclic aromatic hydrocarbons in soils in area of steel works in Fujian Province[J]. Environmental Chemistry, 2012, 31(10): 1542-1548.
Citation: HOU Yanwei, ZHANG Youchi. Assessment on contamination and risk of polycyclic aromatic hydrocarbons in soils in area of steel works in Fujian Province[J]. Environmental Chemistry, 2012, 31(10): 1542-1548.

福建某钢铁厂区域表层土壤PAHs污染特征与风险分析

  • 1.  华侨大学化工学院环境科学与工程系, 厦门, 361021;
  • 2.  中国科学院城市环境研究所城市环境与健康重点实验室, 厦门, 361021
基金项目:

中国科学院知识创新工程重要方向项目(KZCX2-YW-Q02-04)

福建省自然科学基金项目(2012J01177)

中央高校基本科研业务费专项资金(11HZR07)

云南省社会发展科技计划(社会事业发展专项)(2010CA001)资助.

摘要: 采用气相色谱-质谱联用仪(GC-MS)分析福建某钢铁厂区域不同功能区表层土壤中16种优控PAHs含量,并对其组成、来源和环境风险进行了分析.结果表明,各样点土壤中16种优控PAHs的检出率达到100%,其总含量范围为68.7—18100.6 μg·kg-1,平均值为5084.5 μg·kg-1.7个功能区土壤中PAHs主要以高环(4—6环)为主.异构体比值法分析表明该钢铁厂区域各功能区土壤中PAHs主要来源于石油燃料的燃烧.土样中16种PAHs的TEQBaP为6.01—3110 μg·kg-1,平均值为852 μg·kg-1,7种致癌PAHs对16种PAHs总TEQBaP的贡献达到99.1%,其中BaP和DBA对总TEQBaP的贡献值较大,分别达到61.6%和14.5%.除郊区外,其它6个功能区土壤样品10种PAHs的总TEQBaP都超过荷兰土壤标准目标参考值,表明该钢铁厂区域多数功能区表层土壤均存在潜在的环境风险.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回