福建某钢铁厂区域表层土壤PAHs污染特征与风险分析
Assessment on contamination and risk of polycyclic aromatic hydrocarbons in soils in area of steel works in Fujian Province
-
摘要: 采用气相色谱-质谱联用仪(GC-MS)分析福建某钢铁厂区域不同功能区表层土壤中16种优控PAHs含量,并对其组成、来源和环境风险进行了分析.结果表明,各样点土壤中16种优控PAHs的检出率达到100%,其总含量范围为68.7—18100.6 μg·kg-1,平均值为5084.5 μg·kg-1.7个功能区土壤中PAHs主要以高环(4—6环)为主.异构体比值法分析表明该钢铁厂区域各功能区土壤中PAHs主要来源于石油燃料的燃烧.土样中16种PAHs的TEQBaP为6.01—3110 μg·kg-1,平均值为852 μg·kg-1,7种致癌PAHs对16种PAHs总TEQBaP的贡献达到99.1%,其中BaP和DBA对总TEQBaP的贡献值较大,分别达到61.6%和14.5%.除郊区外,其它6个功能区土壤样品10种PAHs的总TEQBaP都超过荷兰土壤标准目标参考值,表明该钢铁厂区域多数功能区表层土壤均存在潜在的环境风险.Abstract: The concentrations of 16 US EPA PAHs in soils from seven districts in the area of steel works were analyzed by GC-MS, and their distribution, sources and environmental risk were investigated. The results showed that all 16 target PAHs were detected in all of the soil samples. The total concentrations of PAHs in the soils ranged from 68.7 to 18100.6 μg·kg-1, and the average concentration was 5084.5 μg·kg-1. The analysis of PAHs fingerprint indicated that the dominant components were high molecular weight (4—6 ring) PAHs in soil samples. The isomeric ratios analysis revealed that the PAHs in the soils originated mainly from fossil fuel combustion. The toxic ben[a]zopyrene equivalents (TEQBaP) of the 16 PAHs ranged from 6.01 to 3110 μg·kg-1, and the average value is 852 μg·kg-1, 99.1% of which was contributed by 7 carcinogenic PAHs. Among 16 PAHs, BaP and DBA contributed 61.6% and 14.5% to the total TEQBaP respectively. The total TEQBaP of 10 PAHs with target value in 6 soil samples exceeded the Dutch target reference values, which suggested that soils PAHs in some functional areas in the study region may have a potential environmental risk.
-
Key words:
- soil /
- PAHs /
- sources /
- risk analysis /
- steel works
-
[1] Durant J L, Busby W F, Lafleur A L, et al. Human cellmutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols[J]. Mutation Research, 1996, 371: 123-157 [2] Santodonato J. Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: Relationship to carcinogenicity[J]. Chemosphere, 1997, 34: 835-848 [3] Aamot E, Steinnes E, Schmid R. Polycyclic aromatichydrocarbons in Norwegian forest soils: Impact of long range atmospheric transport[J]. Environmental Pollution, 1996, 92(3): 275-280 [4] Sun C G, Snape C E, McRae C, et a1. Resolving coal and petroleum-derived polycyclic hydrocarbons (PAHs) in some contaminated land samples using compound-specific stable carbon isotope ratio measurements in conjunction with molecular fingerprints[J]. Fuel, 2003, 82: 2017-2023 [5] Sabbah I, Rebhun M, Gerstl Z. An indpendent prediction of the effect of dissolved organic matter on the transport of polycyclic aromatic hydrocarbons[J]. Journal of Contaminant Hydrology, 2004, 75: 55-70 [6] [7] 王学彤, 贾英, 孙阳昭, 等. 典型污染区农业土壤中PAHs的分布、来源及生态风险[J]. 环境科学学报, 2009, 29(11): 2433-2439 [8] 廖书林, 郎印海, 王延松. 辽河口湿地土壤多环芳烃的分布与生态风险评价[J]. 环境化学, 2011, 30(2): 423-429 [9] 姜林, 钟茂生, 张丹. 污染场地土壤多环芳烃(PAHs)生物可利用浓度的健康风险评价方法[J]. 生态环境学报, 2011, 20(6/7): 1168 -1175
[10] 葛晓立, 严加永, 焦杏春, 等. 徐州市区多环芳烃的环境地球化学特征[J]. 物探与化探, 2008, 32(6): 622-626 [11] 沈菲, 朱利中. 钢铁工业区附近农田蔬菜PAHs的浓度水平及分布[J]. 环境科学, 2007, 28(3): 669-672 [12] VROM. Environmental quality objectives in the Netherlands: A review of environmental quality objectives and their policy framework in the Netherlands [M]. The Hague: Ministry of Housing, Spatial Planning and Environment, 1994 [13] Tsai P J, Shih T S, Chen H L, et al. Assessing and predicting the exposure of PAHs and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers[J]. Atmospheric Environment, 2004, 38: 333-343 [14] Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil:Contamination and profiles[J]. Environmental Pollution, 1999, 105: 67-74 [15] Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11: 121-127 [16] 卜庆伟, 张枝焕, 夏星辉. 分子标志物参数在识别土壤多环芳烃(PAHs)来源中的应用[J]. 土壤通报, 2008, 39: 1204-1209 [17] Readman J W, Fillmann G, Tolosa I, et al. Petroleum and PAH contamination of the Black Sea[J]. Marine Pollution Billetin, 2002, 44: 48-62 [18] Zhang H Y, Andrews A R J, Rews. Preliminary studies of a fast screening method for polycyclic aronatic hydrocarbons in soil by using solvent microextraction-gas chromatography[J]. Journal of Environmental Monitoring, 2000, 2(6): 656-661 [19] 徐绍箐, 马启敏, 李泽利, 等. 锦州湾表层沉积物中多环芳烃测定与生态风险评价[J]. 环境化学, 2011, 30(11): 1900-1905 [20] 庄婉娥, 汪厦霞, 姚文松, 等. 泉州湾表层沉积物中多环芳烃的含量、分布特征及污染来源[J]. 环境化学, 2011,30(5):928-934 [21] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33: 489-515 [22] Neff J M, Burns W A. Estimation of polycyclic aromatic hydrocarbon concentrations in the water column based on tissue residues in mussels and salmon: An equilibrium partitioning approach [J]. Environmental Toxicology and Chemistry, 1996, 15: 2240-2253 [23] Qiao M, Wang C X, Huang S B, et al. Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China[J]. Environment International, 2006, 32: 28-33 [24] Agarwal T, Khillare P S, Shridhar V, et al. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 2008, 163: 1033-1039
计量
- 文章访问数: 840
- HTML全文浏览数: 676
- PDF下载数: 423
- 施引文献: 0