新型填料床-逐级曝气池一体化反应器水处理技术

刘新, 梁怀亮, 施园, 周川, 许斌斌. 新型填料床-逐级曝气池一体化反应器水处理技术[J]. 环境化学, 2012, 31(12): 1901-1907.
引用本文: 刘新, 梁怀亮, 施园, 周川, 许斌斌. 新型填料床-逐级曝气池一体化反应器水处理技术[J]. 环境化学, 2012, 31(12): 1901-1907.
LIU Xin, LIANG Huailiang, SHI Yuan, ZHOU Chuan, XU Binbin. A new integrated reactor of fixed-bed and mutil-aeration bed for waste water treatment[J]. Environmental Chemistry, 2012, 31(12): 1901-1907.
Citation: LIU Xin, LIANG Huailiang, SHI Yuan, ZHOU Chuan, XU Binbin. A new integrated reactor of fixed-bed and mutil-aeration bed for waste water treatment[J]. Environmental Chemistry, 2012, 31(12): 1901-1907.

新型填料床-逐级曝气池一体化反应器水处理技术

  • 基金项目:

    江苏省科技厅社会发展项目(BE2011839)

    PAPD资助.

A new integrated reactor of fixed-bed and mutil-aeration bed for waste water treatment

  • Fund Project:
  • 摘要: 为解决低浓度污水处理工艺脱氮除磷过程中存在的微生物碳源不足的问题,本文研制了新型填料床-逐级曝气串联反应器.填料床分别采用珊瑚砂、竹炭颗粒、钢渣为填料,在好氧、厌氧兼顾的环境下,实现化学除磷、生物除氮.试验采用模拟生活污水,COD、TN、TP、氨氮的浓度为170—190 mg·L-1、27—30 mg·L-1、8—10 mg·L-1,23—25 mg·L-1.反应器在第27天启动成功,100 d稳定运行结果显示,当HRT为14 h,曝气池DO为3.5 mg·L-1,反应器处理效果良好,出水中COD、TN、TP、氨氮的浓度分别为30.7 mg·L-1、5.59 mg·L-1、1.0 mg·L-1、4.67 mg·L-1,达到《城镇污水处理厂污染物排放标准》(GB18918—2002)中的一级B排放标准.经钢渣填料床处理后的污水,TP浓度降到1 mg·L-1左右,在不排泥的情况下,实现TP的高效去除,同时有效避免了除磷与脱氮过程对碳源的竞争,实现了生物法对水体中富余氮、磷的高效去除.
  • 加载中
  • [1] Westerman P W,Bicudo J R,Kantardjieff A. Upflow bio-logical aerated filters for the treatment of flushed swine manure[J]. Bioresour Technol, 2000,74(3): 181-191
    [2] PatelA, Zhu J, Nakhla G. Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor[J]. Chemosphere, 2006, 65(7): 1103-1112
    [3] Liu Y,Tay J H. Strategy for minimization of excess sludge production from the activated sludge process [J]. Biotechnology Advances, 2001,19(2):97-107
    [4] 国家环保局. 水和废水监测分析方法(第4册)[M]. 北京:中国环境科学出版社,2002
    [5] Yasutoshis S, Yu-Ichi O, Katsurshi U,et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J]. Water Res, 1996,30(10): 2385-2392
    [6] Elisabeth V,Münch, Paul Lant, et al. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Water Sci Tech, 1996, 30(2): 277-284,1541
    [7] Asselin C, Chicoine K, Parisien A. Pilot testing and full-scale implementation of the low sludge production (LSP) process[J]. PupPAER-CANADA, 2005, 106(6): 32-35
    [8] Abbassi B,Dullstein S,Rabiger N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs; experimental and theoretical approach[J].Water Res, 2000, 34 (1): 139-146
    [9] Xiong J B,He Z L,Mahmood Q,et al. Phosphate removal from solution using steel slag through magnetic separa-tion[J].J Hazard Mater, 2008, 152 (1):211-215
    [10] Bashan L E, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997—2003)[J].Water Research, 2004, 38 (19):4222-4246
    [11] Kim E H,Yim S B,Jung H C,et al. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material[J].Journal of Hazardous Materials, 2006, 136 (3):690-697
    [12] Xue Y J,Hou H B,Zhu S J. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnaceslag[J].J Hazard Mater, 2009, 162 (2/3):973-980
    [13] Wang S Y,Tsai M H,Lo S F, et al. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal[J].Bioresource Technology, 2008, 99:7027-7033
    [14] Wu K H,Ting T H,Wang G P,et al. Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in2-40GHz[J].Synth Met, 2008, 158 (17/18):688-694
    [15] Zuo Songlin,Gao Shangyu,Yuan Xigen,et al. Carbonization mechanism of bamboo (phyllostachys) by means of fourier transform infrared and elemental analysis[J]. Journal of Forestry Research, 2003,14(1): 23-28
    [16] Davenport R J,Curtis T P,Goodfellow M,et al. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants[J].Appl Environ Microbiol, 2000, 66:1158-1166
  • 加载中
计量
  • 文章访问数:  1447
  • HTML全文浏览数:  1403
  • PDF下载数:  288
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-07
刘新, 梁怀亮, 施园, 周川, 许斌斌. 新型填料床-逐级曝气池一体化反应器水处理技术[J]. 环境化学, 2012, 31(12): 1901-1907.
引用本文: 刘新, 梁怀亮, 施园, 周川, 许斌斌. 新型填料床-逐级曝气池一体化反应器水处理技术[J]. 环境化学, 2012, 31(12): 1901-1907.
LIU Xin, LIANG Huailiang, SHI Yuan, ZHOU Chuan, XU Binbin. A new integrated reactor of fixed-bed and mutil-aeration bed for waste water treatment[J]. Environmental Chemistry, 2012, 31(12): 1901-1907.
Citation: LIU Xin, LIANG Huailiang, SHI Yuan, ZHOU Chuan, XU Binbin. A new integrated reactor of fixed-bed and mutil-aeration bed for waste water treatment[J]. Environmental Chemistry, 2012, 31(12): 1901-1907.

新型填料床-逐级曝气池一体化反应器水处理技术

  • 1. 南京林业大学, 南京, 210037
基金项目:

江苏省科技厅社会发展项目(BE2011839)

PAPD资助.

摘要: 为解决低浓度污水处理工艺脱氮除磷过程中存在的微生物碳源不足的问题,本文研制了新型填料床-逐级曝气串联反应器.填料床分别采用珊瑚砂、竹炭颗粒、钢渣为填料,在好氧、厌氧兼顾的环境下,实现化学除磷、生物除氮.试验采用模拟生活污水,COD、TN、TP、氨氮的浓度为170—190 mg·L-1、27—30 mg·L-1、8—10 mg·L-1,23—25 mg·L-1.反应器在第27天启动成功,100 d稳定运行结果显示,当HRT为14 h,曝气池DO为3.5 mg·L-1,反应器处理效果良好,出水中COD、TN、TP、氨氮的浓度分别为30.7 mg·L-1、5.59 mg·L-1、1.0 mg·L-1、4.67 mg·L-1,达到《城镇污水处理厂污染物排放标准》(GB18918—2002)中的一级B排放标准.经钢渣填料床处理后的污水,TP浓度降到1 mg·L-1左右,在不排泥的情况下,实现TP的高效去除,同时有效避免了除磷与脱氮过程对碳源的竞争,实现了生物法对水体中富余氮、磷的高效去除.

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回