汞的微生物甲基化与去甲基化机理研究进展

谷春豪, 许怀凤, 仇广乐. 汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学, 2013, 32(6): 926-936. doi: 10.7524/j.issn.0254-6108.2013.06.002
引用本文: 谷春豪, 许怀凤, 仇广乐. 汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学, 2013, 32(6): 926-936. doi: 10.7524/j.issn.0254-6108.2013.06.002
GU Chunhao, XU Huaifeng, QIU Guangle. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6): 926-936. doi: 10.7524/j.issn.0254-6108.2013.06.002
Citation: GU Chunhao, XU Huaifeng, QIU Guangle. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6): 926-936. doi: 10.7524/j.issn.0254-6108.2013.06.002

汞的微生物甲基化与去甲基化机理研究进展

  • 基金项目:

    国家重点基础研究发展计划(2013CB430000)

    国家自然科学基金(41073098, 41173126, 41073062)资助.

The progress in research on mechanism of microbial mercury methylation and de-methylation

  • Fund Project:
  • 摘要: 甲基汞具有强烈的生物毒性和生物积累性,环境中甲基汞的产生主要与微生物相关,同时微生物也能通过去甲基化作用使甲基汞转变为无机汞.然而,目前国内外研究主要集中在汞的甲基化机理及影响因素,对汞的微生物去甲基化研究甚少.本文综述了汞的微生物甲基化、去甲基化研究史,以及微生物的主要作用机理,并对相关研究进行了展望,指出微生物酶促甲基化与氧化去甲基化机理研究将是以后工作的重点.
  • 加载中
  • [1] Lindqvist O, Johansson K, Bringmark L, et al. Mercury in the swedish environment-recent research on causes, consequences and corrective methods[J]. Water air and soil pollution, 1991, 55(1):1-261
    [2] Monperrus M, Tessier E, Point D, et al. The biogeochemistry of mercury at the sediment-water interface in the thau lagoon. 2. evaluation of mercury methylation potential in both surface sediment and the water column[J]. Estuarine Coastal and Shelf Science, 2007, 72(3):485-496
    [3] RodrIguez MartIn-Doimeadios R C, Tessier E, Amouroux D, et al. Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes[J]. Marine Chemistry, 2004, 90(1/4):107-123
    [4] Barkay T, Miller S M, Summers A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews, 2003, 27(2/3):355-384
    [5] Eckley C S, Hintelmann H. Determination of mercury methylation potentials in the water column of Lakes Across Canada[J]. Science of The Total Environment, 2006, 368(1):111-125
    [6] Monperrus M, Tessier E, Amouroux D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the mediterranean sea[J]. Marine Chemistry, 2007, 107(1):49-63
    [7] Raposo J C, Ozamiz G, Etxebarria N, et al. Mercury biomethylation assessment in the estuary of bilbao (North of Spain)[J]. Environmental Pollution, 2008, 156(2):482-488
    [8] 刘金玲, 丁振华. 汞的甲基化研究进展[J]. 地球与环境, 2007, 35(3):215-222
    [9] 胡海燕, 冯新斌, 曾永平, 等. 汞的微生物甲基化研究进展[J]. 生态学杂志, 2011, 30(05):874-882
    [10] Whalin L, Kim E H, Mason R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters[J]. Marine Chemistry, 2007, 107(3):278-294
    [11] Compeau G C, Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2):498-502
    [12] King J K, Kostka J E, Frischer M E, et al. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments[J]. Applied and Environmental Microbiology, 2000, 66(6):2430-2437
    [13] Fleming E J, Mack E E, Green P G, et al. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1):457-464
    [14] Kerin E J, Gilmour C C, Roden E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921
    [15] Hamelin S P, Amyot M, Barkay T, et al. Methanogens: Principal methylators of mercury in Lake Periphyton[J]. Environmental Science & Technology, 2011, 45(18):7693-7700
    [16] Vonk J, Sijpesteijn A. Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi[J]. Antonie van Leeuwenhoek, 1973, 39(1):505-513
    [17] Landner L. Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with neurospora crassa[J]. Nature, 1971, 230(5294):452-454
    [18] Gårdfeldt K, Munthe J, Strömberg D, et al. A Kinetic study on the abiotic methylation of divalent mercury in the aqueous phase[J]. Science of The Total Environment, 2003, 304(1/3):127-136
    [19] Weber J H. Review of possible paths for abiotic methylation of mercury(Ⅱ) in the aquatic environment[J]. Chemosphere, 1993, 26(11):2063-2077
    [20] Castro L, Dommergue A l, Larose C, et al. A theoretical study of abiotic methylation reactions of gaseous elemental mercury by halogen-containing molecules[J]. The Journal of Physical Chemistry A, 2011, 115(22):5602-5608
    [21] Hall B, Bloom N S, Munthe J. An experimental study of two potential methylation agents of mercury in the atmosphere: Ch3i and Dms[J]. Water, Air, and Soil Pollution, 1995, 80(1/4):337-341
    [22] Celo V, Lean D R S, Scott S L. Abiotic methylation of mercury in the aquatic environment[J]. Science of The Total Environment, 2006, 368(1):126-137
    [23] Falter R. Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: Part 1: Localisation of the compounds effecting the abiotic mercury methylation[J]. Chemosphere, 1999, 39(7):1051-1073
    [24] Kim E H, Mason R P, Porter E T, et al. The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study[J]. Marine Chemistry, 2006, 102(3/4):300-315
    [25] Han S, Obraztsova A, Pretto P, et al. Biogeochemical factors affecting mercury methylation in sediments of the venice lagoon, italy[J]. Environmental Toxicology and Chemistry, 2007, 26(4):655-663
    [26] Marvin-DiPasquale M, Agee J, McGowan C, et al. Methyl-mercury degradation pathways: A comparison among three mercury-impacted ecosystems[J]. Environmental Science & Technology, 2000, 34(23):4908-4916
    [27] Oremland R S, Culbertson C W, Winfrey M R. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 1991, 57(1):130-137
    [28] Marvin-DiPasquale M C, Oremland R S. Bacterial methylmercury degradation in florida everglades peat sediment[J]. Environmental Science & Technology, 1998, 32(17):2556-2563
    [29] Lehnherr I, St. Louis V L. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems[J]. Environmental Science & Technology, 2009, 43(15):5692-5698
    [30] Suda I, Suda M, Hirayama K. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light[J]. Archives of Toxicology, 1993, 67(5):365-368
    [31] Hammerschmidt C R, Fitzgerald W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan Lake[J]. Environmental Science & Technology, 2010, 44(16):6138-6143
    [32] Black F J, Poulin B A, Flegal A R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters[J]. Geochimica et Cosmochimica Acta, 2012, 84(0):492-507
    [33] Smith T, Pitts K, McGarvey J A, et al. Bacterial oxidation of mercury metal vapor, Hg(0)[J]. Applied and Environmental Microbiology, 1998, 64(4):1328-1332
    [34] Magos L, Halbach S, Clarkson T W. Role of catalase in the oxidation of mercury vapor[J]. Biochemical Pharmacology, 1978, 27(9):1373-1377
    [35] Ebinghaus R, Kock H H, Temme C, et al. Antarctic springtime depletion of atmospheric mercury[J]. Environmental Science & Technology, 2002, 36(6):1238-1244
    [36] Lindberg S E, Brooks S, Lin C J, et al. Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise[J]. Environmental Science & Technology, 2002, 36(6):1245-1256
    [37] Munthe J. The aqueous oxidation of elemental mercury by ozone[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(8):1461-1468
    [38] Yamamoto M. Possible mechanism of elemental mercury oxidation in the presence of SH compounds in aqueous solution[J]. Chemosphere, 1995, 31(2):2791-2798
    [39] Seigneur C, Wrobel J, Constantinou E. A Chemical kinetic mechanism for atmospheric inorganic mercury[J]. Environmental Science & Technology, 1994, 28(9):1589-1597
    [40] Amyot M, Gill G A, Morel F M M. Production and loss of dissolved gaseous mercury in coastal seawater[J]. Environmental Science & Technology, 1997, 31(12):3606-3611
    [41] Gu B, Bian Y, Miller C L, et al. Mercury reduction and complexation by natural organic matter in anoxic environments[J]. Proceedings of the National Academy of Sciences, 2011, 108(4):1479-1483
    [42] Zheng W, Liang L, Gu B. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments[J]. Environmental Science & Technology, 2011, 46(1):292-299
    [43] Barkay T, Turner R, VandenBrook A, et al. The relationships of Hg (Ⅱ) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community[J]. Microbial Ecology, 1991, 21(1):151-161
    [44] Siciliano S D, O'Driscoll N J, Lean D R S. Microbial reduction and oxidation of mercury in freshwater lakes[J]. Environmental Science & Technology, 2002, 36(14):3064-3068
    [45] Freedman Z, Zhu C, Barkay T. Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic aquificae[J]. Applied and Environmental Microbiology, 2012, 78(18):6568-6575
    [46] Wiatrowski H A, Ward P M, Barkay T. Novel reduction of mercury(Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria[J]. Environmental Science & Technology, 2006, 40(21):6690-6696
    [47] Ben-Bassat D, Mayer A M. Light-induced hg volatilization and O2 evolution in chlorella and the effect of DCMU and methylamine[J]. Physiologia Plantarum, 1978, 42(1):33-38
    [48] Devars S, Avilés C, Cervantes C, et al. Mercury uptake and removal by Euglena gracilis[J]. Archives of Microbiology, 2000, 174(3):175-180
    [49] Nriagu J O. Mechanistic steps in the photoreduction of mercury in natural waters[J]. Science of the Total Environment, 1994, 154(1):1-8
    [50] Zhang H, Lindberg S E. Sunlight and iron(Ⅲ)-induced photochemical production of dissolved gaseous mercury in freshwater[J]. Environmental Science & Technology, 2001, 35(5):928-935
    [51] Skogerboe R K, Wilson S A. Reduction of ionic species by fulvic acid[J]. Analytical Chemistry, 1981, 53(2):228-232
    [52] Allard B and Arsenie I. Abiotic reduction of mercury by humic substances in aquatic systeman important process for the mercury cycle[J]. Water, Air, & Soil Pollution, 1991, 56(1):457-464
    [53] Wiatrowski H A, Das S, Kukkadapu R, et al. Reduction of Hg(Ⅱ) to Hg(0) by magnetite[J]. Environmental Science & Technology, 2009, 43(14):5307-5313
    [54] Wood J M, Kennedy F S, Rosen C G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220(5163):173-174
    [55] Jensen S, Jernelov A. Biological methylation of mercury in aquatic organisms[J]. Nature, 1969, 223(5207):753-754
    [56] Yamada M, Tonomura K. Formation of methylmercury compounds from inorganic mercury by clostridium cochlearium[J]. Journal of Fermentation technology, 1972, 50:159-166
    [57] Wood J M. Biological cycles for toxic elements in the environment[J]. Science, 1974, 183(4129):1049-1052
    [58] Compeau G C, Bartha R. Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments[J]. Applied and Environmental Microbiology, 1987, 53(2):261-265
    [59] Kuhl M, Jorgensen B B. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms[J]. Applied and Environmental Microbiology, 1992, 58(4):1164-1174
    [60] Langer C S, Fitzgerald W F, Visscher P T, et al. Biogeochemical cycling of methylmercury at barn island salt marsh, stonington, Ct, USA[J]. Wetlands Ecology and Management, 2001, 9(4):295-310
    [61] Branfireun B A, Roulet N T, Kelly C A, et al. In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments[J]. Global Biogeochemical Cycles, 1999, 13(3):743-750
    [62] Gilmour C C, Elias D A, Kucken A M, et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12):3938-3951
    [63] Fröhlich J, Sass H, Babenzien H D, et al. Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis[J]. Canadian Journal of Microbiology, 1999, 45(2):145-152
    [64] Moore B. A new screen test and selective medium for the rapid detection of epidemic strains of staph. aureus[J]. The Lancet, 1960, 276(7148):453-458
    [65] Richmond M H, John M. Co-transduction by a staphylococcal phage of the genes responsible for penicillinase synthesis and resistance to mercury salts[J]. Nature, 1964, 202(4939):1360-1361
    [66] Tonomura K, Kanzaki F. The reductive decomposition of organic mercurials by cell-free extract of a mercury-resistant pseudomonad[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1969, 184(1):227-229
    [67] Schottel J, Mandal A, Clark D A N, et al. Volatilisation of mercury and organomercurials determined by inducible r-factor systems in enteric bacteria[J]. Nature, 1974, 251(5473):335-337
    [68] Clark D L, Weiss A A, Silver S. Mercury and organomercurial resistances determined by plasmids in pseudomonas[J]. Journal of bacteriology, 1977, 132(1):186-196
    [69] Bruce K D, Hiorns W D, Hobman J L, et al. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction[J]. Applied and Environmental Microbiology, 1992, 58(10):3413-3416
    [70] Osborn A M, Bruce K D, Strike P, et al. Distribution, diversity and evolution of the bacterial mercury resistance (Mer) operon[J]. FEMS Microbiology Reviews, 1997, 19(4):239-262
    [71] Yurieva O, Kholodii G, Minakhin L, et al. Intercontinental spread of promiscuous mercury-resistance transposons in environmental bacteria[J]. Molecular Microbiology, 1997, 24(2):321-329
    [72] Chen B, Wang T, Yin Y, et al. Methylation of inorganic mercury by methylcobalamin in aquatic systems[J]. Applied Organometallic Chemistry, 2007, 21(6):462-467
    [73] Chatziefthimiou A, Crespo-Medina M, Wang Y, et al. The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs[J]. Extremophiles, 2007, 11(3):469-479
    [74] Ramond J B, Berthe T, Lafite R, et al. Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (mera) in estuary mudflats (Seine, France)[J]. Marine Pollution Bulletin, 2008, 56(6):1168-1176
    [75] Soge O O, Beck N K, White T M, et al. A Novel transposon, Tn6009, composed of a tn916 element linked with a staphylococcus aureus mer operon[J]. Journal of Antimicrobial Chemotherapy, 2008, 62(4):674-680
    [76] Ullrich S M, Tanton T W, Abdrashitova S A. Mercury in the aquatic environment: a review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3):241-293
    [77] Avramescu M L, Yumvihoze E, Hintelmann H, et al. Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada[J]. Science of the Total Environment, 2011, 409(5):968-978
    [78] Neujahr H Y, Bertilsson L. Methylation of mercury compounds by methylcobalamin[J]. Biochemistry, 1971, 10(14):2805-2808
    [79] Rudolf K. Thauer E S, Hamilton W A, Barton L L. Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria// w.a.h. l.l. barton, sulphate-reducing bacteria: environmental and engineered systems[M]. Cambridge:Cambridge University Press, 2007: 1
    [80] Konhauser K. Introduction to geomicrobiology[M]. Oxford U. K: Blackwell publishing, 2007:74
    [81] Berman M, Chase T Jr, Bartha R. Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans[J]. Applied and Environmental Microbiology, 1990, 56(1):298-300
    [82] Choi S C, Chase T Jr, Bartha R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans Ls[J]. Applied and Environmental Microbiology, 1994b, 60(11):4072-4077
    [83] Choi S C, Bartha R. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans Ls[J]. Applied and Environmental Microbiology, 1993, 59(1):290-295
    [84] Choi S C, Chase T Jr, Bartha R. Enzymatic catalysis of mercury methylation by desulfovibrio desulfuricans Ls[J]. Applied and Environmental Microbiology, 1994, 60(4):1342-1346
    [85] Drott A. Chemical speciation and transformation of mercury in contaminated sediments//Faculty of Forest Sciences Department of Forest Ecology and Management Umeå[M]. Uppsala: Swedish University of Agricultural Sciences, Doctoral thesis, 2009: 22
    [86] Ekstrom E B, Morel F M M, Benoit J M. Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2003, 69(9):5414-5422
    [87] Ekstrom E B, Morel F M. Mercury methylation by sulfate-reducing bacteria independent of vitamin B12[J]. Materials and Geoenvironment, 2004, 51:968-970
    [88] Benoit J M, Mason R P, Gilmour C C, et al. Constants for mercury binding by dissolved organic matter isolates from the florida everglades[J]. Geochimica et Cosmochimica Acta, 2001, 65(24):4445-4451
    [89] Ekstrom E B, Morel F M M. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria[J]. Environmental Science & Technology, 2008, 42(1):93-99
    [90] Graham A M, Bullock A L, Maizel A C, et al. A detailed assessment of the kinetics of Hg-cell association, Hg methylation, and MeHg degradation in several desulfovibrio species[J]. Applied and Environmental Microbiology, 2012
    [91] Schasfer J, Rocks S, Zheng W, et al. Active transport, substrate specificity, and methylation of Hg(Ⅱ) in anaerobic bacteria[J]. Proceedings of the National Academy of Sciences, 2011, 108(21):8714-8719
    [92] Brown S D, Gilmour C C, Kucken A M, et al. Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132[J]. Journal of bacteriology, 2011, 193(8):2078-2079
    [93] Nascimento A M, Chartone-Souza E. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments[J]. Genetics and molecular research : GMR, 2003, 2(1):92-101
    [94] Susana S, Dias T, Ramalhosa E. Mercury methylation versus demethylation: main processes involved//Clampet A P. Methylmercury: Formation, sources and health effects2011[M]. New York: Nova Science Publishers: 123-166
    [95] Merritt K A, Amirbahman A. Mercury methylation dynamics in estuarine and coastal marine environmentsA Critical Review[J]. Earth-Science Reviews, 2009, 96(1/2):54-66
    [96] Bridou R, Monperrus M, Gonzalez P R, et al. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers[J]. Environmental Toxicology and Chemistry, 2011, 30(2):337-344
    [97] Oremland R S, Miller L G, Dowdle P, et al. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the carson river, nevada[J]. Applied and Environmental Microbiology, 1995, 61(7):2745-53
    [98] Hines M E, Faganeli J, Adatto I, et al. Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija mercury mine, Slovenia[J]. Applied Geochemistry, 2006, 21(11):1924-1939
    [99] Hines M E, Horvat M, Faganeli J, et al. Mercury biogeochemistry in the Idrija river, slovenia, from above the mine into the gulf of trieste[J]. Environmental Research, 2000, 83(2):129-139
    [100] Hines M E, Poitras E N, Covelli S, et al. Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado lagoon, italy)[J]. Estuarine Coastal and Shelf Science, 2012, 113:85-95
    [101] Warner K A, Roden E E, Bonzongo J C. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions[J]. Environmental Science & Technology, 2003, 37(10):2159-2165
    [102] Inoue C, Sugawara K, Kusano T. The merR regulatory gene in thiobacillus ferrooxidans is spaced apart from the Mer structural genes[J]. Molecular Microbiology, 1991, 5(11):2707-2718
    [103] Liebert C A, Wireman J, Smith T, et al. Phylogeny of mercury resistance (Mer) operons of gram-negative bacteria isolated from the fecal flora of primates[J]. Applied and Environmental Microbiology, 1997, 63(3):1066-1076
    [104] Ng S, Davis B, Palombo E, et al. A Tn5051-like Mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. Ao22[J]. BMC Research Notes, 2009, 2(1):38
    [105] Zawadzka A, Crawford R, Paszczynski A. Pyridine-2,6-Bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic[J]. BioMetals, 2007, 20(2):145-158
    [106] Petrovski S, Blackmore D W, Jackson K L, et al. Mercury(Ⅱ)-resistance transposons Tn502 and Tn512, from Pseudomonas clinical strains, are structurally different members of the Tn5053 Family[J]. Plasmid, 2011, 65(1):58-64
    [107] Schaefer J K, Letowski J, Barkay T. Mer -mediated resistance and volatilization of Hg(Ⅱ) under anaerobic conditions[J]. Geomicrobiology Journal, 2002, 19(1):87-102
    [108] 仇广乐, 冯新斌, 王少锋. 贵州汞矿矿区不同位置土壤中总汞和甲基汞污染特征的研究[J]. 环境科学, 2006, 27(3):550-554
    [109] Rothenberg S E, Feng X. Mercury cycling in a flooded rice paddy[J]. Journal of Geophysical Research, 2012, 117(G3):G03003
  • 加载中
计量
  • 文章访问数:  3243
  • HTML全文浏览数:  3126
  • PDF下载数:  3162
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-01-04

汞的微生物甲基化与去甲基化机理研究进展

  • 1.  中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳, 550002;
  • 2.  中国科学院大学, 北京, 100049;
  • 3.  内蒙古自治区矿产实验研究所, 呼和浩特, 010031
基金项目:

国家重点基础研究发展计划(2013CB430000)

国家自然科学基金(41073098, 41173126, 41073062)资助.

摘要: 甲基汞具有强烈的生物毒性和生物积累性,环境中甲基汞的产生主要与微生物相关,同时微生物也能通过去甲基化作用使甲基汞转变为无机汞.然而,目前国内外研究主要集中在汞的甲基化机理及影响因素,对汞的微生物去甲基化研究甚少.本文综述了汞的微生物甲基化、去甲基化研究史,以及微生物的主要作用机理,并对相关研究进行了展望,指出微生物酶促甲基化与氧化去甲基化机理研究将是以后工作的重点.

English Abstract

参考文献 (109)

目录

/

返回文章
返回