头孢曲松氯化消毒转化产物鉴定及机理研究

李立平, 魏东斌, 杜宇国. 头孢曲松氯化消毒转化产物鉴定及机理研究[J]. 环境化学, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028
引用本文: 李立平, 魏东斌, 杜宇国. 头孢曲松氯化消毒转化产物鉴定及机理研究[J]. 环境化学, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028
LI Liping, WEI Dongbin, DU Yuguo. Transformation of ceftriaxone in chlorination process: Products identification and transformation pathways[J]. Environmental Chemistry, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028
Citation: LI Liping, WEI Dongbin, DU Yuguo. Transformation of ceftriaxone in chlorination process: Products identification and transformation pathways[J]. Environmental Chemistry, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028

头孢曲松氯化消毒转化产物鉴定及机理研究

  • 基金项目:

    国家自然科学基金项目(21077123, 20877090, 50938004)资助.

Transformation of ceftriaxone in chlorination process: Products identification and transformation pathways

  • Fund Project:
  • 摘要: 以头孢曲松为目标化合物,探索其在氯消毒处理中的转化机理.结果显示头孢曲松在氯化处理中主要发生两种反应,一种为氧化反应,另一种为氯化反应.头孢曲松分子中的硫醚官能团经氧化生成亚砜产物,消毒剂中的氯原子与噻唑环中的4-C原子发生亲电取代反应生成氯代产物.更为重要的是,本研究还探讨了低浓度头孢曲松在环境水体基质中的氯化转化特征,结果表明,本文所推测的反应机理在含头孢曲松的实际环境水样的氯化处理中同样发生.
  • 加载中
  • [1] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data [J]. Toxicology Letters, 2002, 131: 5-7
    [2] Jiang M X, Wang L H, Ji R. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment [J]. Chemosphere, 2010, 80: 1399-1405
    [3] Kümmerer K. Antibiotics in the aquatic environment: A review-Part Ⅰ[J]. Chemosphere, 2009, 75: 417-434
    [4] Dodd M C, Rentsch D, Singer H P, et al. Transformation of β-lactam antibacterial agents during aqueous ozonation: reaction pathways and quantitative bioassay of biologically-active oxidation products [J]. Environmental Science & Technology, 2010, 44: 5940-5948
    [5] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shen Zhen, China [J]. Water Research, 2008, 42: 395-403
    [6] Lin A Y C, Lin C F, Tsai Y T, et al. Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment process in Taiwan [J]. Water Science and Technology, 2010, 62: 2450-2458
    [7] Li X L, Zheng W, Machesky M L, et al. Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from a beef farm [J]. Journal of Agricultural and Food Chemistry, 2011, 59: 10176-10181
    [8] Andreozzi R, Cappio V, Ciniglia C, et al. Antibiotics in the environment: Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin [J]. Environmental Science & Technology, 2004, 38: 6832-6838
    [9] Carreerr R, Deby-Dupont G, Deby C, et al. Oxidant-scavening activities of beta-lactam agents [J]. European Journal of Clinical Microbiology & Infectious Diseases, 1998, 17: 43-45
    [10] Li B, Zhang T. pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater [J]. Water Research, 2012, 46: 3703-3713
    [11] Dodd M C, Shan A D, von Gunten U, et al. Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: Reactions kinetics, mechanisms, and transformation pathways [J]. Environmental Science & Technology, 2005, 39: 7065-7076
    [12] Wang P, He Y L, Huang C H. Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine [J]. Water Research, 2011, 45: 1838-1846
    [13] Chamerlain E, Adams C. Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine [J]. Water Research, 2006, 40: 2517-2526
    [14] Deborde M, von Gunten U. Reaction of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review [J]. Water Research, 2008, 42: 13-51
    [15] Qiang Z M, Macauley J J, Mormile M R, et al. Treatment of antibiotics and antibiotic resistant bacteria in swine wastewater with free chlorine [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 8144-8154
    [16] Spry D O. Oxidation of penicillin and dihydrocephalosporine derivatives with ozone [J]. Journal of Organic Chemistry, 1976, 37: 793-795
    [17] Drozdz R, Naskalski J W, Sznajd J. Oxidation of aminoacids and peptides in reaction with myeloperoxidase, chloride and hydrogen peroxide [J]. Biochimica et Biophysica Acta, 1988, 957: 47-52
    [18] Armesto X L, Canle L M, Fernandez M I, et al. First steps in the oxidation of sulfu-containing amino acids by hypohalogenation: Very fast generations of intermediate sulfenyl halides and halosulfonium cations [J]. Tetrahedron, 2000, 56: 1103-1109
  • 加载中
计量
  • 文章访问数:  638
  • HTML全文浏览数:  615
  • PDF下载数:  335
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-28
李立平, 魏东斌, 杜宇国. 头孢曲松氯化消毒转化产物鉴定及机理研究[J]. 环境化学, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028
引用本文: 李立平, 魏东斌, 杜宇国. 头孢曲松氯化消毒转化产物鉴定及机理研究[J]. 环境化学, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028
LI Liping, WEI Dongbin, DU Yuguo. Transformation of ceftriaxone in chlorination process: Products identification and transformation pathways[J]. Environmental Chemistry, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028
Citation: LI Liping, WEI Dongbin, DU Yuguo. Transformation of ceftriaxone in chlorination process: Products identification and transformation pathways[J]. Environmental Chemistry, 2013, 32(7): 1328-1334. doi: 10.7524/j.issn.0254-6108.2013.07.028

头孢曲松氯化消毒转化产物鉴定及机理研究

  • 1. 环境化学与生态毒理学国家重点实验室,中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家自然科学基金项目(21077123, 20877090, 50938004)资助.

摘要: 以头孢曲松为目标化合物,探索其在氯消毒处理中的转化机理.结果显示头孢曲松在氯化处理中主要发生两种反应,一种为氧化反应,另一种为氯化反应.头孢曲松分子中的硫醚官能团经氧化生成亚砜产物,消毒剂中的氯原子与噻唑环中的4-C原子发生亲电取代反应生成氯代产物.更为重要的是,本研究还探讨了低浓度头孢曲松在环境水体基质中的氯化转化特征,结果表明,本文所推测的反应机理在含头孢曲松的实际环境水样的氯化处理中同样发生.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回