低温下丙烯与臭氧化学反应机制

陈建华, 邓建国, 耿春梅, 杨晓璐, 杨文. 低温下丙烯与臭氧化学反应机制[J]. 环境化学, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001
引用本文: 陈建华, 邓建国, 耿春梅, 杨晓璐, 杨文. 低温下丙烯与臭氧化学反应机制[J]. 环境化学, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001
CHEN Jianhua, DENG Jianguo, GENG Chunmei, YANG Xiaolu, YANG Wen. Reaction mechanism of ozone and propene at low temperatures[J]. Environmental Chemistry, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001
Citation: CHEN Jianhua, DENG Jianguo, GENG Chunmei, YANG Xiaolu, YANG Wen. Reaction mechanism of ozone and propene at low temperatures[J]. Environmental Chemistry, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001

低温下丙烯与臭氧化学反应机制

  • 基金项目:

    国家自然科学基金项目 (21277132)

    国家环境保护公益性行业科研专项(201309046)

    环境模拟与污染控制国家重点联合实验室专项(11K03ESPCP)资助.

Reaction mechanism of ozone and propene at low temperatures

  • Fund Project:
  • 摘要: 应用低温基质隔离-傅里叶红外检测系统研究了丙烯与臭氧(O3)的反应机制,实验中缓慢地将冷头温度从15 K升高到240 K,并用红外光谱实时地检测反应结果. 结果表明:检测到了丙烯与O3反应的两个重要的中间体——初级臭氧化物(POZ)和次级臭氧化物(SOZ),且实验结果清楚地显示了POZ的生成、约150 K时裂解、SOZ生成整个反应历程,有力地表明丙烯与O3反应是按Criegee机制进行.POZ的红外特征吸收峰为OOO的反对称伸缩振动和CO伸缩振动,分别在637 cm-1和974 cm-1.SOZ在1115 cm-1的红外特征吸收峰为COC反对称伸缩振动.经B3LYP/6-311++G (2 d, 2 p)水平优化得到的丙烯与O3反应中间体——POZ和SOZ的构型分别是O信封式和OO半椅式,在此基础上计算得到的简谐振动频率与实验结果有很好的对应.
  • 加载中
  • [1] Bailey P S. Ozonation in organic chemistry[M]. New York:Academic Press,1978:1-100
    [2] 唐孝炎,张远航,邵敏.大气环境化学[M].2版.北京:高等教育出版社,2006:214-264
    [3] Guenther A K, Harley P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)[J]. Atmospheric Chemistry and Physics, 2006, 6:3181-3210
    [4] 刘兆荣.β-蒎烯大气化学反应的实验室模拟研究[D].北京:北京大学博士学位论文,1999:4-25
    [5] Finlayson-pitts B J, Pitts J N. Upper and lower at atmosphere[M]. California:Academic Press,2000:54-248
    [6] Donahue N M, Kroll J H, Anderson J G, et al. Direct observation of OH production from the ozonolysis of olefins[J]. Geophysical Research Letters,1998, 25:59-62
    [7] Siese M, Becker K H, Brochmann K L, et al. Direct measurement of OH radicals from oOzonolysis of selected alkenes: a EUPHORE simulation chamber study[J]. Environmental Science Technology, 2001, 35:4660-4667
    [8] Atkinson R, Aschmann S M, Arey J, et al. Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes[J]. Journal of Geophysical Research,1992, 97:6065-6073
    [9] Yu J C, David R, Cocker D T, et al. Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products[J]. Journal of Atmospheric Chemistry,1999, 34(2):207-258
    [10] Johnson D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere[J]. Chemical Society Reviews, 2008, 37:699-716
    [11] Carlton A G, Wiedinmyer C, Kroll J H. A review of secondary organic aerosol (SOA) formation from isoprene[J]. Atmospheric Chemistry and Physics, 2009, 9, 4987-5005
    [12] Criegee, R.Mechanisms of ozonolysis[J]. Angewandte Chemie International Edition,1975,14:745-752
    [13] Zhou M F, Andrews L, Bauschlicher C W. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions[J]. Chemical Review, 2001, 101:1931-1961
    [14] Gong Y, Zhou M F, Andrews L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes[J]. Chemical Review,2009, 109, 6765-6808
    [15] Dunkin I R. Matrix isolation techniques:A practical approach[M]. New York:Oxford University Press,1998:1-180
    [16] Hull L A,Hisatsune I C,Heicklen J. Low-temperature infrared studies of simple alkene-ozone reactions[J]. Journal of the American Chemical Society,1972,94:4856-4864
    [17] Andrews L, Kohlmiller C K. Infrared spectra and photochemistry of the primary and secondary ozonides of propene,trans-2-butene,and methylpropene in solid argon[J]. Journal of Physical Chemistry,1902,86:4548-4557
    [18] 邓建国,陈建华,刘红杰,等. 基质隔离傅里叶红外光谱研究O3与乙烯的反应机制[J]. 环境科学研究, 2012,25:1-9
    [19] Coleman B E, Ault B S. Matrix isolation investigation of the ozonolysis of propene[J]. Journal of Molecular Sstructure, 2010, 976:249-256
    [20] Hawkins M, Kohlmiller C K, Andrews L. Matrix infrared spectra and photolysis and pyrolysis of isotopic secondary ozonides of ethylene[J].Journal of Physical Chemistry,1986, 86:3154-3166
    [21] Kuczkowski R L. The structure and mechanism of formation of ozonides[J].Chemical Society Reviews,1992,23:79-83
  • 加载中
计量
  • 文章访问数:  2018
  • HTML全文浏览数:  1922
  • PDF下载数:  400
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-01-17
陈建华, 邓建国, 耿春梅, 杨晓璐, 杨文. 低温下丙烯与臭氧化学反应机制[J]. 环境化学, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001
引用本文: 陈建华, 邓建国, 耿春梅, 杨晓璐, 杨文. 低温下丙烯与臭氧化学反应机制[J]. 环境化学, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001
CHEN Jianhua, DENG Jianguo, GENG Chunmei, YANG Xiaolu, YANG Wen. Reaction mechanism of ozone and propene at low temperatures[J]. Environmental Chemistry, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001
Citation: CHEN Jianhua, DENG Jianguo, GENG Chunmei, YANG Xiaolu, YANG Wen. Reaction mechanism of ozone and propene at low temperatures[J]. Environmental Chemistry, 2013, 32(10): 1827-1833. doi: 10.7524/j.issn.0254-6108.2013.10.001

低温下丙烯与臭氧化学反应机制

  • 1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京, 100012
基金项目:

国家自然科学基金项目 (21277132)

国家环境保护公益性行业科研专项(201309046)

环境模拟与污染控制国家重点联合实验室专项(11K03ESPCP)资助.

摘要: 应用低温基质隔离-傅里叶红外检测系统研究了丙烯与臭氧(O3)的反应机制,实验中缓慢地将冷头温度从15 K升高到240 K,并用红外光谱实时地检测反应结果. 结果表明:检测到了丙烯与O3反应的两个重要的中间体——初级臭氧化物(POZ)和次级臭氧化物(SOZ),且实验结果清楚地显示了POZ的生成、约150 K时裂解、SOZ生成整个反应历程,有力地表明丙烯与O3反应是按Criegee机制进行.POZ的红外特征吸收峰为OOO的反对称伸缩振动和CO伸缩振动,分别在637 cm-1和974 cm-1.SOZ在1115 cm-1的红外特征吸收峰为COC反对称伸缩振动.经B3LYP/6-311++G (2 d, 2 p)水平优化得到的丙烯与O3反应中间体——POZ和SOZ的构型分别是O信封式和OO半椅式,在此基础上计算得到的简谐振动频率与实验结果有很好的对应.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回