表面增强拉曼光谱技术应用于环境污染物检测的研究进展

刘文婧, 杜晶晶, 景传勇. 表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J]. 环境化学, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020
引用本文: 刘文婧, 杜晶晶, 景传勇. 表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J]. 环境化学, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020
LIU Wenjing, DU Jingjing, JING Chuanyong. Surfce-enhanced Raman Spectroscopy (SERS) for environmental pollutants detection:A review[J]. Environmental Chemistry, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020
Citation: LIU Wenjing, DU Jingjing, JING Chuanyong. Surfce-enhanced Raman Spectroscopy (SERS) for environmental pollutants detection:A review[J]. Environmental Chemistry, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020

表面增强拉曼光谱技术应用于环境污染物检测的研究进展

  • 基金项目:

    国家重大科学仪器设备开发专项项目(2011YQ0301241002)资助.

Surfce-enhanced Raman Spectroscopy (SERS) for environmental pollutants detection:A review

  • Fund Project:
  • 摘要: 表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy, SERS)技术作为一种单分子水平的检测技术在众多领域都有广泛的应用.SERS技术的高灵敏性、可实时检测等特点,在环境领域有着巨大的应用前景.本文从增强基底材料的SERS效应、提高其选择性和优化实用性的三个方面介绍了SERS技术应用于环境污染物检测的最新研究进展,并在此基础上提出了今后SERS技术在环境领域的可能发展方向.
  • 加载中
  • [1] Fleischmann M, Hendra P J, McQuilla A. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163-166
    [2] Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry: Part 1.Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J Electroanal Chem, 1977, 84(1): 1-20
    [3] Gersten J I, Birke R L, Lombardi J R. Theory of enhance i light scattering from molecules adsorbed at the metal-solution interface[J]. Phys Rev Lett, 1979, 43(2): 147-150
    [4] Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106
    [5] Wang Z J, Pan S L, Krauss TD, et al. The structural basis for giant enhancement enabling single-molecule raman scattering[J]. Proc Natl Acad Sci U S A, 2003, 100(15): 8638-8643
    [6] Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications[J]. Chem Soc Rev, 2008, 37(5): 912-920
    [7] Wang Y L, Irudayaraj J. Surface-enhanced raman spectroscopy at single-molecule scale and its implications in biology[J]. Philos Trans R Soc B-Biol Sci, 2013, 368(1611): 1-10
    [8] Alvarez-Puebla R A, Liz-Marzan L M. SERS Detection of Small Inorganic Molecules and Ions[J]. Angew Chem-Int Edit, 2012, 51(45): 11214-11223
    [9] Lu L H, Sun G Y, Zhang H J, et al. Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate[J]. J Mater Chem, 2004, 14(6): 1005-1009
    [10] Huh Y S, Chung A J, Erickson D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis[J]. Microfluid Nanofluid, 2009, 6(3): 285-297
    [11] Kim K, Shin K S. Surface-enhanced Raman scattering: A powerful tool for chemical identification[J]. Anal Sci, 2011, 27(8): 775-783
    [12] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395
    [13] Contreras-Caceres R, Abade-Cela S, Guardia-Giros P, et al. Multifunctional microgel magnetic/optical traps for SERS ultradetection[J]. Langmuir, 2011, 27(8): 4520-4525
    [14] Li D, Li D W, Fossey J S, et al. Portable surface-enhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration[J]. Anal Chem, 2010, 82(22): 9299-9305
    [15] Cecchini M P, Turek V A, Paget J, et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nature Materials, 2013, 12(2): 165-171
    [16] Liu Y C, Yu C C, Sheu S F. Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates[J]. J Mater Chem, 2006, 16(35): 3546-3551
    [17] Grasseschi D, Zamarion V M, Araki K, et al. Surface enhanced raman scattering spot tests: A new insight on feigl's analysis using gold nanoparticles[J]. Anal Chem, 2010, 82(22): 9146-9149
    [18] Zamarion V M, Timm R A, Araki K, et al. Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles[J]. Inorg Chem, 2008, 47(8): 2934-2936
    [19] Li F, Wang J, Lai Y, et al. Ultrasensitive and selective detection of copper (Ⅱ) and mercury (Ⅱ) ions by dye-coded silver nanoparticle-based SERS probes[J]. Biosens Bioelectron, 2013, 39(1): 82-87
    [20] Ren W, Zhu C, Wang E. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions[J]. Nanoscale, 2012, 4(19): 5902-5909
    [21] Kang T, Yoo S M, Kang M, et al. Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination[J]. lab chip, 2012, 12(17): 3077-3081
    [22] Senapati T, Senapati D, Singh A K, et al. Highly selective SERS probe for Hg(Ⅱ) detection using tryptophan-protected popcorn shaped gold nanoparticles[J]. Chem Commun, 2011, 47(37): 10326-10328
    [23] Szabo L, Leopold L F, Cozar B I, et al. SERS approach for Zn(Ⅱ) detection in contaminated soil[J]. Cenl Eur J Chem, 2011, 9(3): 410-414
    [24] Du J, Jing C. Preparation of Fe3O4@Ag SERS substrate and its application in environmental Cr(Ⅵ) analysis[J]. J Colloid Interface Sci, 2011, 358(1): 54-61
    [25] Yuan Y X, Ling L, Wang X Y, et al. Surface enhanced raman spectroscopic readout on heavy metal ions based on surface self assembly[J]. J Raman Spectrosc, 2007, 38(10): 1280-1287
    [26] Tsoutsi D, Guerrini L, Manuel Hermida-Ramon J, et al. Simultaneous SERS detection of copper and cobalt at ultratrace levels[J]. Nanoscale, 2013, 5(13): 5841-5846
    [27] Ruan C, Luo W, Wang W, et al. Surface-enhanced raman spectroscopy for uranium detection and analysis in environmental samples[J]. Anal Chim Acta, 2007, 605(1): 80-86
    [28] Gajaraj S, Fan C, Lin M, et al. Quantitative detection of nitrate in water and wastewater by surface-enhanced raman spectroscopy[J]. Environ Monit and Assess, 2013, 185(7): 5673-5681
    [29] Freye CE, Crane NA, Kirchner TB, et al. Surface enhanced raman scattering imaging of developed thin-layer chromatography plates[J]. Anal Chem, 2013, 85(8): 3991-3998
    [30] Ye Y, Liu H, Yang L, et al. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles[J]. Nanoscale, 2012, 4(20): 6442-6448
    [31] Xiao J, Zhang T, Li R, et al. Surface-enhanced raman scattering for quantitative analysis of perchlorate using poly(diallyldimethylammonium chloride) capped gold nanoparticles[J]. Appl Spectrosc, 2012, 66(9): 1027-1033
    [32] Gu B, Ruan C, Wang W. Perchlorate detection at nanomolar concentrations by surface-enhanced raman scattering[J]. Appl Spectrosc, 2009, 63(1): 98-102
    [33] Senapati D, Dasary SSR, Singh AK, et al. A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion Level[J]. Chem Eur J, 2011, 17(30): 8445-8451
    [34] Li J, Chen L, Lou T, et al. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles[J]. ACS Appl Mater Inter, 2011, 3(10): 3936-3941
    [35] Xu Z, Jing C, Hao J, et al. Effect of bonding interactions between arsenate and silver nanofilm on surface-enhanced raman scattering sensitivity[J]. J Phys Chem C, 2012, 116(1): 325-329
    [36] Xu W, Meng G, Huang Q, et al. Large-scale uniform Ag-NW tip array with enriched sub-10-nm gaps as SERS substrate for rapid determination of trace PCB77[J]. Appl Surf Sci, 2013, 271: 125-130
    [37] Tang H, Meng G, Huang Q, et al. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls[J]. Adv Funct Mater, 2012, 22(1): 218-224
    [38] Hu X, Meng G, Huang Q, et al. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates[J]. Nanotechnology, 2012, 23(38): 385705-385711
    [39] Zhu C, Meng G, Huang Q, et al. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration[J]. Cryst Growth Des, 2011, 11(3): 748-752
    [40] Huang Z, Meng G, Huang Q, et al. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs[J]. J Raman Spectrosc, 2013, 44(2): 240-246
    [41] Zhu C, Meng G, Huang Q, et al. Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-beta-CD as effective SERS substrates for trace detection of PCBs[J]. J Mater Chem, 2012, 22(5): 2271-2278
    [42] Zhou Q, Yang Y, Ni J, et al. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced raman scattering using Ag nanorods as a substrate[J]. Nano Res, 2010, 3(6): 423-428
    [43] Yuan J, Lai Y, Duan J, et al. Synthesis of a beta-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs[J]. J Colloid Interface Sci, 2012, 365(1): 122-126
    [44] Zhou Q, Zhang X, Huang Y, et al. Rapid detection of polychlorinated biphenyls at trace levels in real environmental samples by surface-enhanced raman scattering[J]. Sensors, 2011, 11(11): 10851-10858
    [45] Bantz K C, Haynes C L. Surface-enhanced raman scattering detection and discrimination of polychlorinated biphenyls[J]. Vib Spectrosc, 2009, 50(1): 29-35
    [46] Shi X, Ma J, Zheng R, et al. An improved self-assembly gold colloid film as surface-enhanced raman substrate for detection of trace-level polycyclic aromatic hydrocarbons in aqueous solution[J]. J Raman Spectrosc, 2012, 43(10): 1354-1359
    [47] Mueller M, Tebbe M, Andreeva DV, et al. Large-area organization of pNIPAM-coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase[J]. Langmuir, 2012, 28(24): 9168-9173
    [48] Kwon Y H, Sowoidnich K, Schmidt H, et al. Application of calixarene to high active surface-enhanced raman scattering (SERS) substrates suitable for in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater[J]. J Raman Spectrosc, 2012, 43(8): 1003-1009
    [49] Kwon Y H, Ossig R, Hubenthal F, et al. Influence of surface plasmon resonance wavelength on SERS activity of naturally grown silver nanoparticle ensemble[J]. J Raman Spectrosc, 2012, 43(10): 1385-1391
    [50] Xie Y, Wang X, Han X, et al. Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs[J]. J Raman Spectrosc, 2011, 42(5): 945-950
    [51] Lopez-Tocon I, Otero J C, Arenas J F, et al. Multicomponent direct detection of polycyclic aromatic hydrocarbons by surface-enhanced raman spectroscopy using silver nanoparticles functionalized with the viologen host lucigenin[J]. Anal Chem, 2011, 83(7): 2518-2525
    [52] Du J, Jing C. Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification[J]. J Phys Chem C, 2011, 115(36): 17829-17835
    [53] Yang M, Alvarez-Puebla R, Kim H S, et al. SERS-active gold lace nanoshells with built-in hotspots[J]. Nano Lett, 2010, 10(10): 4013-4019
    [54] Xie Y, Wang X, Han X, et al. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced raman scattering[J]. Analyst, 2010, 135(6): 1389-1394
    [55] Leyton P, Cordova I, Lizama-Vergara P A, et al. Humic acids as molecular assemblers in the surface-enhanced raman scattering detection of polycyclic aromatic hydrocarbons[J]. Vib Spectrosc, 2008, 46(2): 77-81
    [56] Qu L L, Li Y T, Li D W, et al. Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons[J]. Analyst, 2013, 138(5): 1523-1528
    [57] Shi X, Kwon Y H, Ma J, et al. Trace analysis of polycyclic aromatic hydrocarbons using calixarene layered gold colloid film as substrates for surface-enhanced raman scattering[J]. J Raman Spectrosc, 2013, 44(1): 41-46
    [58] Kasera S, Biedermann F, Baumberg J J, et al. Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs[J]. Nano Lett, 2012, 12(11): 5924-5928
    [59] Ossig R, Kolomijeca A, Kwon Y H, et al. SERS signal response and SERS/SERDS spectra of fluoranthene in water on naturally grown Ag nanoparticle ensembles[J]. J Raman Spectrosc, 2013, 44(5): 717-722
    [60] Jiang X, Lai Y, Yang M, et al. Silver nanoparticle aggregates on copper foil for reliable quantitative SERS analysis of polycyclic aromatic hydrocarbons with a portable Raman spectrometer[J]. Analyst, 2012, 137(17): 3995-4000
    [61] Peron O, Rinnert E, Toury T, et al. Quantitative SERS sensors for environmental analysis of naphthalene[J]. Analyst, 2011, 136(5): 1018-1022
    [62] Guerrini L, Garcia-Ramos J V, Domingo C, et al. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced raman scattering[J]. Anal Chem, 2009, 81(3): 953-960
    [63] Guerrini L, Garcia-Ramos J V, Domingo C, et al. Nanosensors based on viologen functionalized silver nanoparticles: few molecules surface enhanced raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots[J]. Anal Chem, 2009, 81(4): 1418-1425
    [64] Zhang L, Jiang C, Zhang Z. Graphene oxide embedded sandwich nanostructures for enhanced raman readout and their applications in pesticide monitoring[J]. Nanoscale, 2013, 5(9): 3773-3779
    [65] Zheng X, Chen Y, Chen Y, et al. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced raman scattering[J]. J Raman Spectrosc, 2012, 43(10): 1374-1380
    [66] Saute B, Premasiri R, Ziegler L, et al. Gold nanorods as surface enhanced raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides[J]. Analyst, 2012, 137(21): 5082-5087
    [67] Liu B, Han G, Zhang Z, et al. Shell thickness-dependent raman enhancement for rapid identification and detection of pesticide residues at fruit peels[J]. Anal Chem, 2012, 84(1): 255-261
    [68] Yazdi S H, White IM. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem[J]. Analyst, 2013, 138(1): 100-103
    [69] Li X, Chen G, Yang L, et al. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection[J]. Adv Funct Mater, 2010, 20(17): 2815-2824
    [70] Yang L, Bao Z, Wu Y, et al. Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4 microspheres[J]. J Raman Spectrosc, 2012, 43(7): 848-856
    [71] Wu L, Wang Z, Shen B. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl[J]. Nanoscale, 2013, 5(12): 5274-5278
    [72] Liu B, Zhou P, Liu X, et al. Detection of pesticides in fruits by surface-enhanced raman spectroscopy coupled with gold nanostructures[J]. Food Bioprocess Tech, 2013, 6(3): 710-718
    [73] Fodjo E K, Riaz S, Li D W, et al. Cu@Ag/beta-AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides[J]. Anal Methods-UK, 2012, 4(11): 3785-3791
    [74] Tang H, Fang D, Li Q, et al. Determination of tricyclazole content in paddy rice by surface enhanced raman spectroscopy[J]. J Food Sci, 2012, 77(5): T105-T109
    [75] Gao R, Choi N, Chang S I, et al. Highly sensitive trace analysis of paraquat using a surface-enhanced raman scattering microdroplet sensor[J]. Anal Chim Acta, 2010, 681(1/2): 87-91
    [76] Bonora S, Benassi E, Maris A, et al. Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides[J]. J Mol Struct, 2013, 1040: 139-148
    [77] Carrillo-Carrion C, Simonet B M, Valcarcel M, et al. Determination of pesticides by capillary chromatography and SERS detection using a novel Silver-Quantum dots "sponge" nanocomposite[J]. J Chromatogr A, 2012, 1225: 55-61
    [78] Yu W W, White I M. A simple filter-based approach to surface enhanced raman spectroscopy for trace chemical detection[J]. Analyst, 2012, 137(5): 1168-1173
    [79] Fathi F, Lagugne-Labarthet F, Pedersen D B, et al. Studies of the interaction of two organophosphonates with nanostructured silver surfaces[J]. Analyst, 2012, 137(19): 4448-4453
    [80] Xie Y, Mukamurezi G, Sun Y, et al. Establishment of rapid detection method of methamidophos in vegetables by surface enhanced raman spectroscopy[J]. Eur Food Res Technol, 2012, 234(6): 1091-1098
    [81] Jia J-L, Xu H-H, Zhang G R, et al. High quality gold nanorods and nanospheres for surface-enhanced raman scattering detection of 2,4-dichlorophenoxyacetic acid[J]. Nanotechnology, 2012, 23(49):495710-495715
    [82] Costa J C S, Ando R A, Sant'Ana A C, et al. Surface-enhanced raman spectroscopy studies of organophosphorous model molecules and pesticides[J]. PCCP, 2012, 14(45): 15645-15651
    [83] Guerrini L, Sanchez-Cortes S, Cruz V L, et al. Surface-enhanced raman spectra of dimethoate and omethoate[J]. J Raman Spectrosc, 2011, 42(5): 980-985
    [84] Guerrini L, Izquierdo-Lorenzo I, Garcia-Ramos JV, et al. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots[J]. PCCP, 2009, 11(34): 7363-7371
    [85] Guerrini L, Aliaga A E, Carcamo J, et al. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced raman scattering[J]. Anal Chim Acta, 2008, 624(2): 286-293
    [86] Baigorri R, Garcia-Mina J M, Aroca R F, et al. Optical enhancing properties of anisotropic gold nanoplates prepared with different fractions of a natural humic substance[J]. Chem Mater, 2008, 20(4): 1516-1521
    [87] Song W, Shang X h, Lu Y, et al. Raman and surface-enhanced raman scattering of chlorophenols[J]. Chem Res Chinese U, 2011, 27(5): 854-856
    [88] Xue J Q, Li D W, Qu L L, et al. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced raman scattering[J]. Anal Chim Acta, 2013, 777: 57-62
    [89] Ding Q, Liu H, Yang L, et al. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates[J]. J Mater Chem, 2012, 22(37): 19932-19939
    [90] Farcau C, Potara M, Leordean C, et al. Reliable plasmonic substrates for bioanalytical SERS applications easily prepared by convective assembly of gold nanocolloids[J]. Analyst, 2013, 138(2): 546-552
    [91] An Q, Zhang P, Li J-M, et al. Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants[J]. Nanoscale, 2012, 4(16): 5210-5216
    [92] Piorek B D, Lee S J, Santiago J G, et al. Free-surface microfluidic control of surface-enhanced raman spectroscopy for the optimized detection of airborne molecules[J]. Proc Natl Acad Sci U S A, 2007, 104(48): 18898-18901
    [93] Qu L L, Song Q X, Li Y T, et al. Fabrication of bimetallic microfluidic surface-enhanced raman scattering sensors on paper by screen printing[J]. Anal Chim Acta, 2013, 792: 86-92
    [94] Zhou X, Liu H, Yang L, et al. SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film[J]. Analyst, 2013, 138(6): 1858-1864
    [95] Mahmoud KA, Zourob M. Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT)[J]. Analyst, 2013, 138(9): 2712-2719
    [96] Liu M, Chen W. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced raman spectroscopy[J]. Biosens Bioelectron, 2013, 46: 68-73
    [97] Wen C, Liao F, Liu S, et al. Bi-functional ZnO-RGO-Au substrate: photocatalysts for degrading pollutants and SERS substrates for real-time monitoring[J]. Chem Commun, 2013, 49(29): 3049-3051
    [98] Demeritte T, Kanchanapally R, Fan Z, et al. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid[J]. Analyst, 2012, 137(21): 5041-5045
    [99] Botti S, Almaviva S, Cantarini L, et al. Trace level detection and identification of nitro-based explosives by surface-enhanced raman spectroscopy[J]. J Raman Spectrosc, 2013, 44(3): 463-468.
    [100] Xu Z, Hao J, Braida W, et al. Surface-enhanced raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles[J]. Langmuir, 2011, 27(22): 13773-13779
    [101] Li Y T, Qu L L, Li D W, et al. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced raman spectroscopy[J]. Biosens Bioelectron, 2013, 43: 94-100
    [102] Lin W-C, Jen H-C, Chen C L, et al. SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays[J]. Plasmonics, 2009, 4(2): 187-192
    [103] Pearman W F, Angel S M, Ferry J L, et al. Characterization of the Ag mediated surface-enhanced raman spectroscopy of saxitoxin[J]. Appl Spectrosc, 2008, 62(7): 727-732
    [104] Wang H H, Cheng T Y, Sharma P, et al. Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection[J]. Nanotechnology, 2011, 22(38): 385702-385708
    [105] Sinha G, Depero L E, Alessandri I. Recyclable SERS substrates based on Au-coated ZnO nanorods[J]. ACS Appl Mater Inter, 2011, 3(7): 2557-2563
    [106] Ye Y, Chen J, Ding Q, et al. Sea-urchin-like Fe3O4@C@Ag particles: An efficient SERS substrate for detection of organic pollutants[J]. Nanoscale, 2013, 5(13): 5887-5895
    [107] Baia L, Diamandescu L, Barbu-Tudoran L, et al. Efficient dual functionality of highly porous nanocomposites based on TiO2 and noble metal particles[J]. J Alloy Compd, 2011, 509(6): 2672-2678
    [108] Chen L M, Liu Y N. Surface-enhanced raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: Effect of metal ions[J]. ACS Appl Mater Inter, 2011, 3(8): 3091-3096
    [109] Olavarria-Fullerton J, Wells S, Ortiz-Rivera W, et al. Surface-enhanced raman scattering (SERS) characterization of trace organoarsenic antimicrobials using silver/polydimethylsiloxane nanocomposites[J]. Appl Spectrosc, 2011, 65(4): 423-428
    [110] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced raman spectroscopy[J]. Annu Rev Anal Chem, 2008: 1: 601-624
    [111] Laurent G, Felidj N, Grand J, et al. Raman scattering images and spectra of gold ring arrays[J]. Phys Rev B, 2006, 73(24): 245417-245422
    [112] Halvorson R A, Vikesland P J. Surface-enhanced raman spectroscopy (SERS) for environmental analyses[J]. Environmental Science & Technology, 2010, 44(20): 7749-7755
    [113] Zhang Z Y, Zhao Y P. Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes[J]. J Appl Phys, 2007, 102(11):113308-113323
    [114] Ko H, Chang S, Tsukruk V V. Porous substrates for label-free molecular level detection of nonresonant organic molecules[J]. ACS Nano, 2009, 3(1): 181-188
    [115] Leyton P, Gomez-Jeria J S, Sanchez-Cortes S, et al. Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: Surface-enhanced resonance Raman spectroscopy and theoretical studies[J]. J Phys Chem B, 2006, 110(13): 6470-6474
    [116] Alvarez-Puebla R A, dos Santos D S, Aroca R F. SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials[J]. Analyst, 2007, 132(12): 1210-1214
    [117] Dasary S S R, Singh A K, Senapati D, et al. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene[J]. J Am Chem Soc, 2009, 131(38): 13806-13812
    [118] Qian K, Liu H L, Yang L B, et al. Functionalized shell-isolated nanoparticle-enhanced raman spectroscopy for selective detection of trinitrotoluene[J]. Analyst, 2012, 137(20): 4644-4646
    [119] Hao J M, Han M J, Li J W, et al. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced raman scattering[J]. J Colloid Interface Sci, 2012, 377: 51-57
    [120] Yang L B, Ma L A, Chen G Y, et al. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate[J]. Chem Eur J, 2010, 16(42): 12683-12693
    [121] Holthoff E L, Stratis-Cullum D N, Hankus M E. A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced raman scattering[J]. Sensors, 2011, 11(3): 2700-2714
    [122] Zhang CX, Su L, Chan Y F, et al. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced raman scattering[J]. Nanotechnology, 2013, 24(33): 335501-335506
    [123] Wang Y, Wang K, Zou B, et al. Magnetic-based silver composite microspheres with nanosheet-assembled shell for effective SERS substrate[J]. Journal of Materials Chemistry C, 2013, 1(13): 2441-2447
    [124] Zhou Y, Chen J, Zhang L, et al. Multifunctional TiO2-coated Ag nanowire arrays as recyclable SERS substrates for the detection of organic pollutants[J]. Eur J Inorg Chem, 2012, (19): 3176-3182
  • 加载中
计量
  • 文章访问数:  4471
  • HTML全文浏览数:  4471
  • PDF下载数:  2873
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-09-29
刘文婧, 杜晶晶, 景传勇. 表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J]. 环境化学, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020
引用本文: 刘文婧, 杜晶晶, 景传勇. 表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J]. 环境化学, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020
LIU Wenjing, DU Jingjing, JING Chuanyong. Surfce-enhanced Raman Spectroscopy (SERS) for environmental pollutants detection:A review[J]. Environmental Chemistry, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020
Citation: LIU Wenjing, DU Jingjing, JING Chuanyong. Surfce-enhanced Raman Spectroscopy (SERS) for environmental pollutants detection:A review[J]. Environmental Chemistry, 2014, 33(2): 217-228. doi: 10.7524/j.issn.0254-6108.2014.02.020

表面增强拉曼光谱技术应用于环境污染物检测的研究进展

  • 1. 环境化学与生态毒理学国家重点实验室, 中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家重大科学仪器设备开发专项项目(2011YQ0301241002)资助.

摘要: 表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy, SERS)技术作为一种单分子水平的检测技术在众多领域都有广泛的应用.SERS技术的高灵敏性、可实时检测等特点,在环境领域有着巨大的应用前景.本文从增强基底材料的SERS效应、提高其选择性和优化实用性的三个方面介绍了SERS技术应用于环境污染物检测的最新研究进展,并在此基础上提出了今后SERS技术在环境领域的可能发展方向.

English Abstract

参考文献 (124)

返回顶部

目录

/

返回文章
返回