[1]
|
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38
|
[2]
|
Rengaraj S, Li X. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension[J]. J Mol Catal A: Chem, 2006, 243: 60-67
|
[3]
|
Vijayan P, Mahendiran C, Suresh C, et al. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol[J]. Catal Today, 2009, 141: 220-224
|
[4]
|
Wang Y, Zhang Y, Zhao G, et al. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol[J]. Appl Mater Interfaces, 2012, 4: 3965-3972
|
[5]
|
李向清, 康诗钊, 唐韵秋, 等. 碳掺杂的二氧化钛纳米管的制备及其可见光催化性能[J]. 应用化学, 2013, 30(2): 178-184
|
[6]
|
宋海南, 李国喜, 周建庆, 等. Fe3O4/TiO2磁性催化剂的制备及在污水治理中的应用[J]. 分子催化, 2011, 25(6): 557-562
|
[7]
|
刘惠涛, 高原. TiO2/γ-Fe2O3磁分离光催化剂的制备及其催化性能研究[J]. 兰州大学学报: 自然科学版, 2003, 39(6): 49-53
|
[8]
|
Xuan S, Jiang W, Gong X, et al. Magnetically separable Fe3O4/TiO2 hollow spheres: Fabrication and photocatalytic activity[J]. J Phys Chem C, 2009, 113: 553-558
|
[9]
|
Yan L, Cheng Y, Yuan S, et al. Photocatalytic degradation kinetics of methyl orange in TiO2-SiO2-NiFe2O4 aqueous suspensions[J]. Res Chem Intermed, 2013, 39: 1673-1684
|
[10]
|
Mourão H A J L, Malagutti A R, Ribeiro C. Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and phodamine B in water[J]. Appl Catal A: General, 2010, 382: 284-292
|
[11]
|
左显维, 费鹏, 胡常林,等. 磁性TiO2/CoFe2O4纳米复合光催化材料的制备[J]. 无机化学学报, 2009, 25(7): 1233-1237
|
[12]
|
Yuan Z H, Zhang L D. Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite[J]. J Mater Chem, 2001, 11: 1265-1268
|
[13]
|
Beydoun D, Amal R. Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution[J]. J Phys Chem B, 2000, 104: 4387-4396
|
[14]
|
Yu X, Liu S, Yu J. Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties[J]. Appl Catal B, 2011, 104: 12-20
|
[15]
|
Yuan Q, Li N, Geng W, et al. Preparation of magnetically recoverable Fe3O4@SiO2@meso-TiO2 nanocomposites with enhanced photocatalytic ability[J]. Mater Res Bull, 2012, 47: 2396-2402
|
[16]
|
王拯, 张风宝. 磁载光催化剂TiO2/Al2O3/γ-Fe2O3的制备与降解染料的优化模型[J]. 环境化学, 2008, 27(3): 283-287
|
[17]
|
Li H, Zhang Y, Wu Q, et al. Preparation and photocatalytic properties of nanometer-sized magnetic TiO2/SiO2/CoFe2O4 composites[J]. J Nanosci and Nanotechnol,, 2011, 11(11): 10173-10181
|
[18]
|
杨静, 崔世海, 练鸿振. 磁载光催化剂Fe3O4/C/TiO2的制备及对三氯苯酚的降解[J]. 无机化学学报, 2013, 29(10): 2043-2048
|
[19]
|
Liu H, Jia Z, Ji S, et al. Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dye stuff[J]. Catal Today, 2011, 175: 293-298
|
[20]
|
张秀玲, 孙东峰, 韩一丹, 等. TiO2-CoFe2O4磁性复合材料制备及太阳光催化性能[J]. 无机化学学报, 2013, 27(7): 1373-1377
|
[21]
|
Xu S H, Tan D D, Bi D-F, et al. Effect of magnetic carrier NiFe2O4 nanoparticles on physicochemical and catalytic properties of magnetically separable photocatalyst TiO2/NiFe2O4[J]. Chem Res Chin Univ, 2013, 29(1): 121-125
|
[22]
|
Balaji S, Selvan R K, Berchmans L J, et al. Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4[J]. Mater Sci Eng B, 2005, 119: 119-124
|
[23]
|
Beydoun D, Amal R, Scott J, et al. Studies on the mineralization and separation efficiencies of a magnetic photocatalyst[J]. Chem Eng Technol, 2001, 24: 745-748
|
[24]
|
Li C J, Wang J N, Wang B, et al. A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV-vis light[J]. Mater Res Bull, 2012, 27: 333-337
|
[25]
|
栾江月, 张秀芳, 董晓丽, 等. Fe3O4-TiO2磁性光催化剂的制备与性能[J]. 大连工业大学学报, 2013, 32(1): 51-54
|
[26]
|
Wang R, Wang X, Xi X, et al. Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites[J]. Adv Mater Sci Eng, 2012, 2012: 1-8
|
[27]
|
Jing J, Li J, Feng J, et al. Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts[J]. Chem Eng J, 2013, 219: 355-360
|
[28]
|
侯林瑞, 原长洲, 彭秧. 磁载光催化剂Ag-TiO2/ZnO/γ-Fe2O3的制备及其光催化性能[J]. 应用化学, 2006, 23(11): 1278-1281
|
[29]
|
Wang Z, Shen L, Zhu S. Synthesis of core-shell Fe3O4@SiO2@TiO2 microspheres and their application as recyclable photocatalysts[J]. Int J Photoenergy, 2012, 2012: 1-6
|
[30]
|
He Z, Hong T, Chen J, et al. A magnetic TiO2 photocatalyst doped with iodine for organic pollutant degradation[J]. Sep Purif Technol, 2012, 96: 50-57
|
[31]
|
Quiñones D H, Rey A, Álvarez P M Enhanced activity and reusability of TiO2 loaded magnetic activated carbon for solar photocatalytic ozonation[J]. Appl Catal B: Environ, 2014, 144: 96-106
|
[32]
|
Xu X, Ji F, Fan Z, et al. Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/TiO2 under solar light[J]. Int J Environ Res Pub Health, 2011, 8: 1258-1270
|
[33]
|
Tang Y, Zhang G, Liu C, et al. Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water[J]. J Hazard Mater, 2013, 252-253: 115-122
|
[34]
|
袁进, 吕永康, 李裕, 等. 介孔磁性光催化剂的制备及其催化降解硝基苯[J]. 催化学报, 2010, 31(5), 597-603
|
[35]
|
Yu L, Peng X J, Ni F, et al. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption[J]. J Hazard Mater, 2013, 246-247: 10-17
|
[36]
|
Shchukin D G, Ustinovich E A, Sviridov D V, et al. Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide[J]. High Energy Chem, 2004, 38: 167-173
|
[37]
|
Gaur S, Johansson S, Mohammad F, et al. Catalytic activity of titania-supported core-shell Fe3O4@Au nano-catalysts for CO oxidation[J]. J Phys Chem C, 2012, 116: 22319-22326
|
[38]
|
陈安伟, 曾光明, 陈桂秋, 等. 金属纳米材料的生物毒性效应研究进展[J]. 环境化学, 2014, 33(4): 568-575
|