黄铁矿对水体中腐殖酸的吸附特性

方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 黄铁矿对水体中腐殖酸的吸附特性[J]. 环境化学, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007
引用本文: 方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 黄铁矿对水体中腐殖酸的吸附特性[J]. 环境化学, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007
FANG Yanfen, LI Xinyu, ZHOU Wei, WANG Xiaowei, CAI Kuan, JIA Manke, HUANG Yingping. Adsorption characteristics of humic acids on pyrite in water[J]. Environmental Chemistry, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007
Citation: FANG Yanfen, LI Xinyu, ZHOU Wei, WANG Xiaowei, CAI Kuan, JIA Manke, HUANG Yingping. Adsorption characteristics of humic acids on pyrite in water[J]. Environmental Chemistry, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007

黄铁矿对水体中腐殖酸的吸附特性

  • 基金项目:

    国家自然科学基金(21377067,21207079,21177072)

    湖北省新世纪人才入选人员优先资助项目(201203)

    中国科学院生态环境研究中心开放基金(KF2011-07)

    三峡大学人才科研启动基金(KJ2011B074)资助.

Adsorption characteristics of humic acids on pyrite in water

  • Fund Project:
  • 摘要: 选择富里酸(fulvic acid, FA)和胡敏酸(humilic acid, HA)作为吸附对象,通过铁矿物吸附筛选实验,以黄铁矿(pyrite)为吸附剂研究其对水体中两种典型腐殖酸(humic acid)的吸附特性.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)、红外光谱(IR)、纳米粒度及电位(Zeta)分析仪和比表面仪(BET)对黄铁矿进行组成及结构表征.考察了腐殖酸溶液pH、离子强度和温度等条件对黄铁矿吸附的影响.结果表明,黄铁矿是层状结构,吸附腐殖酸后,在黄铁矿表面形成了大小均匀的分子簇,且黄铁矿晶粒尺寸减小了约10 nm;黄铁矿对FA、HA的最大吸附量分别为11.8 mg·g-1和13.1 mg·g-1.随着pH增加,黄铁矿对腐殖酸的吸附量均表现为先增大后减小;离子强度(NaCl)对吸附的影响较小;随着温度升高,其吸附量不断增大.两种腐殖酸吸附数据与Langmuir吸附模型拟合良好且其吸附动力学规律均符合二级动力学模型,热力学研究表明,黄铁矿吸附两种腐殖酸均属于自发进行的吸热反应.
  • 加载中
  • [1] Hueso Sara, Brunetti Gennaro, Senesi Nicola, et al. Semiarid soils submitted to severe drought stress: Influence on humic acid characteristics in organic-ame nded soils[J]. Journal of Soils and Sediments, 2012, 12(4): 503-512
    [2] Güngör E Burcu Özkaraova, Bekbölet Miray. Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption[J]. Geoderma, 2010, 159(1/2): 131-138
    [3] Zhang Yuanbo, Li Peng, Zhou Youlian, et al. Adsorption of lignite humic acid onto magnetite particle surface[J]. Journal of Central South, 2012, 19(7): 1967-1972
    [4] Weng Liping, Vanriemsdijk Willem H, Hiemstra Tjisse, et al. Effects of fulvic and humic acids on arsenate adsorption to goethite: Experiments and modeling[J]. Environmental Science & Technology, 2009, 43(19): 7198-7204
    [5] Tanaka Masato, Miyajima Miki, Hishioka Naoko, et al. Humic acid induces the endothelial nitric oxide synthase phosphorylation at Ser1177 and Thr495 Via Hsp90α and Hsp90 upregulation in human umbilical vein endothelial cells[J]. Environmental Toxicology, Online
    [6] Yang Xin, Guo Wanhong, Shen Qianqian. Formation of disinfection byproducts from chlor(am)ination of algal organic matter[J]. Journal of Hazardous Materials, 2011, 197(15): 378-388
    [7] Han Sangjin, Kim Sukjae, Lim Hacgyu, et al. New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids[J]. Microporous and Mesoporous Materials, 2003, 58(2): 131-135
    [8] Yang Shubin, Hu Jun, Chen Changlun, et al. Mutual effects of Pb(Ⅱ) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions[J]. Environmental Science & Technology, 2011, 45(8): 3621-3627
    [9] Wang Jinnan, Zhou Yang, Li Aimin, et al. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption[J]. Journal of Hazardous Materials, 2010, 176(1/3): 1018-1026
    [10] Zhang X, Bai Renbi. Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules[J]. Journal of Colloid and Interface Science, 2003, 264(1): 34-38
    [11] Hizal Jülide, Apark Resat. Modeling of cadmium(Ⅱ) adsorption on kaolinite-based clays in the absence and presence of humic acid[J]. Applied Clay Science, 2006, 32(3/4): 232-244
    [12] Liu Aiguo, Gonzalez Richard D. Adsorption/desorption in a system consisiting of humic acid, heavy metals, and clay minerals[J]. Journal of Colloid and Interface Science, 1999, 218(1): 225-232
    [13] Brigante Maximiliano, Zanini Graciela, Avena Marcelo. Effect of humic acids on the adsorption of paraquat by goethite[J]. Journal of Hazardous Materials, 2010, 184 (1/3): 241-247
    [14] Olsson Rickard, Giesler Reiner, Loring John S, et al. Enzymatic hydrolysis of organic phosphates adsorbed on mineral surfaces[J]. Environmental Science & Technology, 2012, 46(1): 285-291
    [15] Marshall-Bowman Karina, Ohara Shohei, Sverjensky Dimitri A. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry[J]. Geochimica Et Cosmochimica Acta, 2010, 74(20): 5852-5861
    [16] Schreiner Eduard, Nair Nisanth N, Wittekindt Carsten, et al. Peptide synthesis in aqueous environments: The role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides[J]. Journal of American Chemical Society, 2011, 133(21): 8216-8226
    [17] Kumpulainen Sirpa, Kammer Frank von der, Hofmann Thilo. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters[J]. Water Research, 2008, 42(8/9): 2051-2060
    [18] Illés E, Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid and Interface Science, 2006, 295(1): 115-123
    [19] Vmeerer A W P, Riemsdijk W H Van, Koopal L K. Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions[J]. Langmuir, 1998, 14(10): 2810-2819
    [20] Vmeerer A W P, Koopal L. K. Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption[J]. Langmuir, 1998, 14(15): 4210-4216
    [21] Fein Jeremy B, Boily Jean-Francois, Güclü Kubilay, et al. Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces[J]. Chemical Geology, 1999, 162(1): 33-45
    [22] Von open B, Kordel W, Klein W. Sorption of nonplus and polar compounds toSolis: Processes, measurement and experience with the applicability of themodified OECD-guideline[J]. Chemosphere, 1991(22): 285-304
    [23] Shimoda S, Brydon J E. IR studies of some interstratified minerals of mica and monotmorillonite[J]. Clays and Clay Minerals, 1971, 19: 61-66
  • 加载中
计量
  • 文章访问数:  1814
  • HTML全文浏览数:  1766
  • PDF下载数:  803
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-01-09
  • 刊出日期:  2014-11-15
方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 黄铁矿对水体中腐殖酸的吸附特性[J]. 环境化学, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007
引用本文: 方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 黄铁矿对水体中腐殖酸的吸附特性[J]. 环境化学, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007
FANG Yanfen, LI Xinyu, ZHOU Wei, WANG Xiaowei, CAI Kuan, JIA Manke, HUANG Yingping. Adsorption characteristics of humic acids on pyrite in water[J]. Environmental Chemistry, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007
Citation: FANG Yanfen, LI Xinyu, ZHOU Wei, WANG Xiaowei, CAI Kuan, JIA Manke, HUANG Yingping. Adsorption characteristics of humic acids on pyrite in water[J]. Environmental Chemistry, 2014, 33(11): 1941-1949. doi: 10.7524/j.issn.0254-6108.2014.11.007

黄铁矿对水体中腐殖酸的吸附特性

  • 1.  三峡地区地质灾害与生态环境湖北省协同创新中心(三峡大学), 宜昌, 443002;
  • 2.  三峡库区生态环境教育部工程研究中心(三峡大学), 宜昌, 443002
基金项目:

国家自然科学基金(21377067,21207079,21177072)

湖北省新世纪人才入选人员优先资助项目(201203)

中国科学院生态环境研究中心开放基金(KF2011-07)

三峡大学人才科研启动基金(KJ2011B074)资助.

摘要: 选择富里酸(fulvic acid, FA)和胡敏酸(humilic acid, HA)作为吸附对象,通过铁矿物吸附筛选实验,以黄铁矿(pyrite)为吸附剂研究其对水体中两种典型腐殖酸(humic acid)的吸附特性.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)、红外光谱(IR)、纳米粒度及电位(Zeta)分析仪和比表面仪(BET)对黄铁矿进行组成及结构表征.考察了腐殖酸溶液pH、离子强度和温度等条件对黄铁矿吸附的影响.结果表明,黄铁矿是层状结构,吸附腐殖酸后,在黄铁矿表面形成了大小均匀的分子簇,且黄铁矿晶粒尺寸减小了约10 nm;黄铁矿对FA、HA的最大吸附量分别为11.8 mg·g-1和13.1 mg·g-1.随着pH增加,黄铁矿对腐殖酸的吸附量均表现为先增大后减小;离子强度(NaCl)对吸附的影响较小;随着温度升高,其吸附量不断增大.两种腐殖酸吸附数据与Langmuir吸附模型拟合良好且其吸附动力学规律均符合二级动力学模型,热力学研究表明,黄铁矿吸附两种腐殖酸均属于自发进行的吸热反应.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回