赣南某钨矿区土壤中Cd、Pb的形态特征及生态风险评价
Distribution characteristics and ecological risk assessment of heavy metals Cd and Pb in soils around a tungsten mine of Gannan
-
摘要: 以赣南某钨矿区稻田及菜田土壤为研究对象,采用Dold七步提取法分析了土壤中Cd、Pb的分布特征,运用富集系数法及次生相与原生相比值法综合评价了钨矿区土壤中Cd、Pb的生态风险.形态分析表明,Cd、Pb主要以原生硫化物态为主,其次为残渣态;Cd、Pb的生物可利用态分配系数较低,为1.18%-6.48%,生物潜在可利用态分配系数较高,为56.70%-87.43%,Pb的生物活性略高于Cd.风险评价表明,从重金属总量富集角度评价,土壤中Cd为重度污染到极度污染,Pb为中度污染到严重污染,平均污染程度为Cd>>Pb;从形态角度评价,Cd、Pb均为轻度污染到重度污染,Cd、Pb各采样点的次生相与原生相分布比值(P%)空间差异性明显,Pb的各采样点P%空间差异性更为显著,平均污染程度为CdAbstract: Rice field soil samples and vegetable field soil samples were collected from a tungsten mine area in Gannan. The distribution characteristics of Cd and Pb in the soils were analyzed by Dold seven step extraction, and the ecological risks of Cd and Pb in the soils were evaluated by the enrichment factors and the ratio of secondary phase and primary phase. The sequential extraction results show that Cd and Pb were mainly composed of primary sulfide, followed by residual fractions.The bio-available distribution coefficients of Pb and Cd are low, with 1.18%-6.48%, and the potential bio-available distribution coefficients are high, with 56.70%-87.43%.The biological activity of Pb is slightly higher than that of Cd. The risk assessment based on enrichment factors of the total amount of heavy metals shows that Cd is polluted from heavy to extreme, Pb is polluted from moderately to heavy, and the average pollution level is Cd>>Pb. From the fraction, Cd and Pb are polluted from slightly to heavy,there are significant differences in the P% (ratio of secondary phase and primary phase) of each sampling point of Cd and Pb,and the difference in the P% of Pb is more significant, the average pollution level is Cd
-
Key words:
- tungsten mine area /
- soils /
- lead /
- cadmium /
- fraction analysis /
- ecological risk /
- Gannan
[1] Comcas A, Ardau C, Cristini A, et al. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site[J]. Cheriiosphere,2006,63:244-253 [2] [3] Olawoyin R,Oyewole S A,Grayson R L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta[J]. Ecotoxicology and Environmental Safety,2012,85: 120-130 [4] 高彦鑫,冯金国,唐磊,等. 密云水库上游金属矿区土壤中重金属形态分布及风险评价[J].环境科学,2012,33(5):1707-1717 [5] 孙清斌,尹春芹,邓金峰,等. 大冶矿区土壤-蔬菜重金属污染特征及健康风险评价[J].环境化学,2013,32(4):671-677 [6] [7] 李永华. 凤凰铅锌矿区土壤铅的化学形态及污染特征[J].农业环境科学学报,2012,31(7):1337-1342 [8] 周航,曾敏,刘俊,等.湖南4个典型工矿区大豆种植土壤Pb、Cd、 Zn污染调查与评价[J].农业环境科学学报,2011,30(3):476-481 [9] 孙锐,舒帆,郝伟,等. 典型 Pb/Zn矿区土壤重金属污染特征与Pb同位素源分析[J].环境科学,2011,32(4):1146-1153 [10] 陆泗进,王业耀,何立环,等.会泽某铅锌矿周边农田土壤重金属生态风险评价[J].生态环境学报,2014, 23(11): 1832-1838 [11] 何书海, 林彰文, 杨安富, 等. 海南昌江石碌钴铜矿尾矿库重金属污染环境现状调查[J]. 环境监测管理与技术, 2012, 24(3):41-45 [12] 徐友宁,张江华,柯海玲,等. 某金矿区农田土壤重金属污染的人体健康风险[J].地质通报,2014,33(8):1239-1252 [13] 王斐,黄益宗,王小玲,等.江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J].环境化学,2015,34(2):225-233 [14] 林文杰. 莲花山钨矿区土壤重金属污染与理化特征[J].土壤通报,2014,45(1):232-236 [15] 郭笑笑,刘从强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896 [16] Bernhard Dold. Speciation of the most soluble phase in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste[J].Journal of Geochemical Exploration,2003,80(1):55-68 [17] 赵庆令,李清彩,谢江坤,等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015,34(1):129-137 [18] 徐亚岩,宋金明,李学刚,等.渤海湾表层沉积物各形态重金属的分布特征与生态风险评价[J].环境科学,2012,33(3):732-740 [19] 赵胜男,李畅游,史小红. 乌梁素海沉积物重金属生物活性及环境污染评估[J].生态环境学报,2013,22(3):481-489 [20] 李如忠,徐晶晶,姜艳敏,等. 铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96 [21] 何纪力,徐光炎,朱惠民,等.江西省土壤环境背景值研究[M].北京:中国环境科学出版社,2006.34-35 点击查看大图
计量
- 文章访问数: 1400
- HTML全文浏览数: 1341
- PDF下载数: 517
- 施引文献: 0