氧氟沙星在不同性质碳基吸附剂上的吸附动力学特征

黄清利, 王朋, 张凰, 张迪, 周跃. 氧氟沙星在不同性质碳基吸附剂上的吸附动力学特征[J]. 环境化学, 2016, 35(4): 651-657. doi: 10.7524/j.issn.0254-6108.2016.04.2015111603
引用本文: 黄清利, 王朋, 张凰, 张迪, 周跃. 氧氟沙星在不同性质碳基吸附剂上的吸附动力学特征[J]. 环境化学, 2016, 35(4): 651-657. doi: 10.7524/j.issn.0254-6108.2016.04.2015111603
HUANG Qingli, WANG Peng, ZHANG Huang, ZHANG Di, ZHOU Yue. Sorption kinetics of ofloxacin by carbonaceous sorbents with different characteristics[J]. Environmental Chemistry, 2016, 35(4): 651-657. doi: 10.7524/j.issn.0254-6108.2016.04.2015111603
Citation: HUANG Qingli, WANG Peng, ZHANG Huang, ZHANG Di, ZHOU Yue. Sorption kinetics of ofloxacin by carbonaceous sorbents with different characteristics[J]. Environmental Chemistry, 2016, 35(4): 651-657. doi: 10.7524/j.issn.0254-6108.2016.04.2015111603

氧氟沙星在不同性质碳基吸附剂上的吸附动力学特征

  • 基金项目:

    国家自然科学基金(41303093)

    云南省自然科学基金(2014FB121)

    昆明理工大学人才启动经费(14118762)资助.

Sorption kinetics of ofloxacin by carbonaceous sorbents with different characteristics

  • Fund Project: Supported by the National Natural Science Foundation of China(41303093),Yunnan Province Natural Science Foundation Projects(2014FB121) Talent Start-up Funding of Kunming University of Science and Technology(14118762).
  • 摘要: 本研究探讨用香蕉皮和玉米芯两类生物质制备的生物炭、多壁纳米碳管(CNTs)和活性炭(AC)对氧氟沙星(OFL)的吸附动力学过程.结果表明,吸附动力学过程符合双室一级动力学模型.OFL在两类生物炭上的吸附能力随炭化温度的升高而减弱,归因于生物质炭化程度的增大,芳香性增加,生物炭有机分配相减少.生物炭的O含量极大地影响了其与水分子之间形成水膜的能力,OFL穿透水膜在生物炭表面上的吸附过程成为控制OFL吸附快慢的关键环节.OFL在CNTs和AC的快室吸附比在生物炭上的先趋于平衡,这可能与CNTs和AC较为单一的表面性质有关.CNTs的慢室吸附比AC的慢室吸附需要更长时间达到平衡,主要原因是随着OFL分子在CNTs表面持续吸附,原先由于疏水性作用聚合在一起的CNTs逐渐分散开,暴露出更多的表面积,导致OFL持续的吸附,在动力学上表现为慢室吸附.此外,单位比表面积上CNTs对OFL的吸附量最高,表明如果能够使CNTs充分分散,大量暴露的表面可能使CNTs成为去除有机污染的高效吸附剂.
  • 加载中
  • [1] GAO B,WANG P,ZHOU H,et al. Sorption of phthalic acid esters in two kinds of landfill leachates by the carbonaceous sorbents[J]. Bioresource Technology, 2013, 136:295-301.
    [2] JI L,CHEN W,DUAN L,et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents[J]. Environmental Science & Technology, 2009, 43:2322-2327.
    [3] JI L,CHEN W,ZHENG S,et al. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes[J]. Langmuir, 2009, 25:11608-11613.
    [4] JI L,LIU F,XU Z,et al. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro-and mesoporous carbons[J]. Environmental Science & Technology, 2010, 44:3116-3122.
    [5] GRIFFITHS R A. Sorption and desorption by ideal two-compartment systems: Unusual behavior and data interpretation problems[J]. Chemosphere, 2004, 55:443-454.
    [6] DJURDJEVIC P T,JELIKIC-STANKOV M. Study of solution equilibria between aluminum (III) ion and ofloxacin[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, 19:501-510.
    [7] CAMPAGNOLO ER,JOHNSON KR,KARPATI A,et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. The Science of the Total Environment, 2002, 299:89-95.
    [8] DAUGHTON C G,TERNES T A. Pharmaceuticals and personal care products in the environment: agents of subtle change?[J]. Environmental Health Perspectives, 1999,:907-938.
    [9] TOLLS J. Sorption of veterinary pharmaceuticals in soils: A review[J]. Environmental Science & Technology, 2001, 35:3397-3406.
    [10] KANG S,XING B. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environmental Science & Technology, 2005, 39:134-140.
    [11] CHEN Z,CHEN B,CHIOU C T,et al. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J]. Environmental Science & Technology, 2012, 46:11104-11111.
    [12] ZHENG H,WANG Z,ZHAO J,et al. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures[J]. Environmental Pollution, 2013, 181:60-67.
    [13] 李靖,吴敏,毛真,等. 热解底泥对两种氟喹诺酮类抗生素和双酚 A 的吸附[J]. 环境化学, 2013, 32(4):613-621.

    LI J, WU M, MAO Z, et al. Sorption of two fluoroquinolone antibiotics and bisphenol A on thermally-treated sediments[J]. Environmental Chemistry, 2013, 32(4): 613-621 (in Chinese).

    [14] PAN B,XING B. Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. I. Several concerns regarding pseudo-first order and pseudo-second order models[J]. Journal of Soils and Sediments, 2010, 10:838-844.
    [15] JOHNSON M D,KEINATH T M,WEBER W J. A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates[J]. Environmental Science & Technology, 2001, 35:1688-1695.
    [16] PAN B,XING B,LIU W,et al. Two-compartment sorption of phenanthrene on eight soils with various organic carbon contents[J]. Journal of Environmental Science and Health Part B, 2006, 41:1333-1347.
    [17] 张迪,吴敏,李浩,等. 土壤有机碳对磺胺甲噁唑吸附的影响[J]. 环境化学, 2012, 31(8):1238-1243.

    ZHANG D, WU M, LI H, et al. Effect of organic carbon on sulfamethoxazole sorption on soil[J]. Environmental Chemistry, 2012, 31(8): 1238-1243 (in Chinese).

    [18] 陈光才,沈秀娥. 碳纳米管对污染物的吸附及其在土水环境中的迁移行为[J]. 环境化学, 2010, 29(2):159-168

    CHEN G C, SHEN X E. Adsorption of environmental contaminants onto carbon nanotubes and their transport in water and soil[J]. Environmental Chemistry, 2010, 29(2):159-168 (in Chinese).

    [19] 赵兴兴,于水利,王哲. 氧氟沙星在碳纳米管上的吸附机制研究[J]. 环境科学, 2014(2), 35:663-668.

    ZHAO X X, YU S L, WANG Z. Sorption Mechanism of Ofloxacin by Carbon Nanotubes[J]. Environmental Science, 2014(2), 35:663-668 (in Chinese).

  • 加载中
计量
  • 文章访问数:  891
  • HTML全文浏览数:  821
  • PDF下载数:  401
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-16
  • 刊出日期:  2016-04-15

氧氟沙星在不同性质碳基吸附剂上的吸附动力学特征

  • 1.  昆明理工大学, 环境科学与工程学院, 昆明, 650500;
  • 2.  昆明理工大学, 云南省食品安全研究院, 昆明, 650500
基金项目:

国家自然科学基金(41303093)

云南省自然科学基金(2014FB121)

昆明理工大学人才启动经费(14118762)资助.

摘要: 本研究探讨用香蕉皮和玉米芯两类生物质制备的生物炭、多壁纳米碳管(CNTs)和活性炭(AC)对氧氟沙星(OFL)的吸附动力学过程.结果表明,吸附动力学过程符合双室一级动力学模型.OFL在两类生物炭上的吸附能力随炭化温度的升高而减弱,归因于生物质炭化程度的增大,芳香性增加,生物炭有机分配相减少.生物炭的O含量极大地影响了其与水分子之间形成水膜的能力,OFL穿透水膜在生物炭表面上的吸附过程成为控制OFL吸附快慢的关键环节.OFL在CNTs和AC的快室吸附比在生物炭上的先趋于平衡,这可能与CNTs和AC较为单一的表面性质有关.CNTs的慢室吸附比AC的慢室吸附需要更长时间达到平衡,主要原因是随着OFL分子在CNTs表面持续吸附,原先由于疏水性作用聚合在一起的CNTs逐渐分散开,暴露出更多的表面积,导致OFL持续的吸附,在动力学上表现为慢室吸附.此外,单位比表面积上CNTs对OFL的吸附量最高,表明如果能够使CNTs充分分散,大量暴露的表面可能使CNTs成为去除有机污染的高效吸附剂.

English Abstract

参考文献 (19)

目录

/

返回文章
返回