还原条件下氧化石墨烯对铅离子的吸附/解吸附性能

张建锋, 梁程, 车东昇, 朱维晃. 还原条件下氧化石墨烯对铅离子的吸附/解吸附性能[J]. 环境化学, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101
引用本文: 张建锋, 梁程, 车东昇, 朱维晃. 还原条件下氧化石墨烯对铅离子的吸附/解吸附性能[J]. 环境化学, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101
ZHANG Jianfeng, LIANG Cheng, CHE Dongsheng, ZHU Weihuang. Adsorption and desorption of lead on graphene oxide surface under reduction condition[J]. Environmental Chemistry, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101
Citation: ZHANG Jianfeng, LIANG Cheng, CHE Dongsheng, ZHU Weihuang. Adsorption and desorption of lead on graphene oxide surface under reduction condition[J]. Environmental Chemistry, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101

还原条件下氧化石墨烯对铅离子的吸附/解吸附性能

  • 基金项目:

    国家自然科学基金(41373093)和陕西省自然科学基础研究计划(2016JM5080)资助.

Adsorption and desorption of lead on graphene oxide surface under reduction condition

  • Fund Project: Supported by the National Natural Science Foundation of China (41373093) and Natural Science Basic Research Plan in Shaanxi Province of China (2016JM5080).
  • 摘要: 针对地下水还原条件下附着Pb离子氧化石墨烯(GO)纳米颗粒的环境稳定性,实验研究了厌氧条件下Na2S还原对GO吸附Pb2+以及解吸附过程的影响.采用X射线光电子能谱、傅里叶变换红外光谱、X射线衍射以及表面增强拉曼技术对吸附与解吸附的过程机理进行分析比较.结果表明,GO及Na2S还原生成rGO对Pb2+的吸附过程符合Langmuir吸附模型,最大吸附容量分别为937.65、92.99 mg·g-1,GO还原后Pb2+吸附容量减小;厌氧条件下Na2S还原引起GO表面吸附的Pb释放,实验条件下有19.9%-35.3%被吸附的Pb以离子形态释放出来.光谱分析表明,吸附Pb的GO在厌氧条件下被Na2S还原致使GO表面含氧官能团减少,造成Pb解吸附,解吸附释放出的部分Pb与反应体系中的硫化物结合生成PbS沉淀.附着Pb的GO进入还原环境后,以Pb2+离子形式解吸附释放的Pb会引起水体的再污染.
  • 加载中
  • [1] BACIOCCHI R,BERARDI S,VERGINELLI I.Human health risk assessment:Models for predicting the effective exposure duration of on-site receptors exposed to contaminated groundwater[J].Journal of Hazardous Materials,2010,181(1/3):226-233.
    [2] 于晓莉,刘强.水体重金属污染及其对人体健康影响的研究[J].绿色科技,2011(10):123-126.YU X,LIU Q.Research Status of Heavy Metal Pollution in Waters and its Effects on Human Health[J].Journal of Green Science and Technology,2011

    (10):123-126(in Chinese).

    [3] FU F,WANG Q.Removal of heavy metal ions from wastewaters:A review[J].Journal of Environmental Management,2011,92(3):407-418.
    [4] SITKO R,TUREK E,ZAWISZA B,et al.Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J].Dalton Trans,2013,42(16):5682-5689.
    [5] 樊伟,卞战强,田向红,等.巯基硅烷改性氧化石墨对砷的吸附性能[J].环境化学,2013,32(5):810-818.

    FAN W,BIAN Z,TIAN X,et al.Study on arsenic adsorption performance by sulfhydryl silane modified oxidation graphite[J].ENVIRONMENTAL CHEMISTRY,2013,32(5):810-818(in Chinese).

    [6] GERÇEL Ö,GERÇEL H F.Adsorption of lead (Ⅱ) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida[J].Chemical Engineering Journal,2007,132(1-3):289-297.
    [7] MACHIDA M,MOCHIMARU T,TATSUMOTO H.Lead (Ⅱ) adsorption onto the graphene layer of carbonaceous materials in aqueous solution[J].Carbon,2006,44(13):2681-2688.
    [8] GEIM A K.Graphene:Status and prospects[J].Science,2009,324:1530-1534.
    [9] MARCANO D C,KOSYNKIN D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
    [10] SUN Y,WANG Q,CHEN C,et al.Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J].Environmental Science&Technology,2012,46(11):6020-6027.
    [11] PEI S,CHENG H.The reduction of graphene oxide[J].Carbon,2012,50(9):3210-3228.
    [12] PARK S,AN J,POTTS J R,et al.Hydrazine-reduction of graphite-and graphene oxide[J].Carbon,2011,49(9):3019-3023.
    [13] YANG X,CHEN C,LI J,et al.Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants[J].RSC Advances,2012,2:8821-8826.
    [14] SALAS E C,SUN Z,TTGE A L,et al.Reduction of graphene oxide via bacterial respiration[J].American Chemical Society,2010,4(8):4852-4856.
    [15] SEKAR M,SAKTHI V,RENGARAJ S.Kinetics and equilibrium adsorption study of lead (Ⅱ) onto activated carbon prepared from coconut shell[J].Journal of Colloid and Interface Science,2004,279(2):307-313.
    [16] OLANIPEKUN O,OYEFUSI A,NEELGUND G M,et al.Adsorption of lead over graphite oxide[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,118:857-860.
    [17] 常青,江国栋,胡梦璇,等.石墨烯基磁性复合材料吸附水中亚甲基蓝的研究[J].环境科学,2014,35(5):1804-1809.

    CHANG Q,JIANG G D,HU M X,et al.Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/graphene oxide nanoparticles[J].Enciromental Science,2014,35(5):1804-1809(in Chinese).

    [18] ZHANG J,YANG H,SHEN G,et al.Reduction of graphene oxide via L-ascorbic acid[J].Chem Commun (Camb),2010,46(7):1112-1114.
    [19] CHEN W,YAN L,BANGAL P R.Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J].The Journal of Physical Chemistry C,2010,114(47):19885-19890.
    [20] YANG D,VELAMAKANNI A,BOZOKLU G,et al.Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J].Carbon,2009,47(1):145-152.
    [21] 沈倩,张建锋,孟晓光,等.纳米氧化石墨烯对水中锶的吸附特征[J].环境化学,2014,33(11):1923-1929.

    SHEN Q,ZHANG J,MENG X,et al.A study on nanometer oxide graphene's adsorption characteristics of strontium in water[J].ENVIRONMENTAL CHEMISTRY,2014,33(11):1923-1929(in Chinese).

    [22] GUO L,YE P,WANG J,et al.Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal[J].Journal of Hazardous Materials,2015,298:28-35.
    [23] CHOWDHURY I,DUCH M C,MANSUKHANI N D,et al.Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J].Environ Sci Technol,2013,47(12):6288-6296.
    [24] ESFANDIAR A,AKHAVAN O,IRAJIZADAB A.Melatonin as a powerful bioantioxidant for reduction of graphene oxide[J].Journal of Materials Chemistry,2011,(21):10907-10914.
    [25] WANG Y,CHOU S,LIU H,et al.Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J].Carbon,2013,57:202-208.
  • 加载中
计量
  • 文章访问数:  976
  • HTML全文浏览数:  898
  • PDF下载数:  600
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-02-01
  • 刊出日期:  2016-09-15
张建锋, 梁程, 车东昇, 朱维晃. 还原条件下氧化石墨烯对铅离子的吸附/解吸附性能[J]. 环境化学, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101
引用本文: 张建锋, 梁程, 车东昇, 朱维晃. 还原条件下氧化石墨烯对铅离子的吸附/解吸附性能[J]. 环境化学, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101
ZHANG Jianfeng, LIANG Cheng, CHE Dongsheng, ZHU Weihuang. Adsorption and desorption of lead on graphene oxide surface under reduction condition[J]. Environmental Chemistry, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101
Citation: ZHANG Jianfeng, LIANG Cheng, CHE Dongsheng, ZHU Weihuang. Adsorption and desorption of lead on graphene oxide surface under reduction condition[J]. Environmental Chemistry, 2016, 35(9): 1935-1942. doi: 10.7524/j.issn.0254-6108.2016.09.2016020101

还原条件下氧化石墨烯对铅离子的吸附/解吸附性能

  • 1.  西安建筑科技大学环境与市政工程学院, 西安, 710055;
  • 2.  中交第一公路勘察设计研究院有限公司, 西安, 710055
基金项目:

国家自然科学基金(41373093)和陕西省自然科学基础研究计划(2016JM5080)资助.

摘要: 针对地下水还原条件下附着Pb离子氧化石墨烯(GO)纳米颗粒的环境稳定性,实验研究了厌氧条件下Na2S还原对GO吸附Pb2+以及解吸附过程的影响.采用X射线光电子能谱、傅里叶变换红外光谱、X射线衍射以及表面增强拉曼技术对吸附与解吸附的过程机理进行分析比较.结果表明,GO及Na2S还原生成rGO对Pb2+的吸附过程符合Langmuir吸附模型,最大吸附容量分别为937.65、92.99 mg·g-1,GO还原后Pb2+吸附容量减小;厌氧条件下Na2S还原引起GO表面吸附的Pb释放,实验条件下有19.9%-35.3%被吸附的Pb以离子形态释放出来.光谱分析表明,吸附Pb的GO在厌氧条件下被Na2S还原致使GO表面含氧官能团减少,造成Pb解吸附,解吸附释放出的部分Pb与反应体系中的硫化物结合生成PbS沉淀.附着Pb的GO进入还原环境后,以Pb2+离子形式解吸附释放的Pb会引起水体的再污染.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回