天然石生苔藓汞含量及对大气汞污染的生物指示

曹阿翔, 敖明, 梁隆超, 徐晓航, 仇广乐, 陈卓. 天然石生苔藓汞含量及对大气汞污染的生物指示[J]. 环境化学, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505
引用本文: 曹阿翔, 敖明, 梁隆超, 徐晓航, 仇广乐, 陈卓. 天然石生苔藓汞含量及对大气汞污染的生物指示[J]. 环境化学, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505
CAO Axiang, AO Ming, LIANG Longchao, XU Xiaohang, QIU Guangle, CHEN Zhuo. Mercury concentration in epilithic mosses and its bio-indication of atmospheric mercury pollution[J]. Environmental Chemistry, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505
Citation: CAO Axiang, AO Ming, LIANG Longchao, XU Xiaohang, QIU Guangle, CHEN Zhuo. Mercury concentration in epilithic mosses and its bio-indication of atmospheric mercury pollution[J]. Environmental Chemistry, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505

天然石生苔藓汞含量及对大气汞污染的生物指示

  • 基金项目:

    受贵州师范大学研究生创新基金(研创201516),国家重点基础研究发展计划项目(2013CB430004),国家自然科学基金(41573135),贵阳市科技计划项目(筑科合同[2011401]社6-3号),贵阳市科技计划项目(筑科合同[2012303]14号)资助.

Mercury concentration in epilithic mosses and its bio-indication of atmospheric mercury pollution

  • Fund Project: Supported by Postgraduate's Innovation Fund of Guizhou Normal University(201516), the National Basic Research Program of China (2013CB430004), National Natural Science Foundation of China(41573135), Technological Program of Guiyang([2011401]6-3), Technological Program of Guiyang([2012303]14).
  • 摘要: 采集贵州万山汞矿区6属7种优势种类苔藓84个样品,测定其汞含量,同时现场监测部分苔藓采样点近地表大气汞,定量分析苔藓汞和大气汞质量浓度之间的关系.结果显示,研究区苔藓汞质量浓度范围为0.96-126 μg·g-1,平均值80±46 μg·g-1,受触媒生产、废触媒回收等涉汞化工厂生产活动影响显著;苔藓汞与大气汞呈正相关关系,表现为线性拟合相关性系数r=0.93(n=12,P=0.01030),多项式拟合相关性系数r=0.96(n=12,P=0.01169),对数拟合相关性系数r=0.96(n=12,P=0.00469);选择对数拟合方程估算苔藓采样点大气汞浓度,发现拟合得到的大气汞空间分布特征和实测苔藓汞空间分布特征基本一致,从而通过定量/半定量方法证明了可以利用苔藓汞指示大气汞污染,为汞污染场地修复过程中的大气汞污染评价提供了新思路.
  • 加载中
  • [1] LINDQVIST O, JOHANSSON K, BRINGMARK L, et al. Mercury in the Swedish environment-recent research on causes, consequences and corrective methods[J]. Water, Air, and Soil Pollution, 1991, 55(1/2): 1-261.
    [2] MASON R P, FITZGERALD W F, MOREL F M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences[J]. Geochimica et Cosmochimica Acta, 1994, 58(15): 3191-3198.
    [3] RYTUBA J J. Mercury from mineral deposits and potential environmental impact[J]. Environmental Geology, 2003, 43(3): 326-338.
    [4] HALL B. The gas phase oxidation of elemental mercury by ozone[M].Springer Netherlands: Mercury as a Global Pollutant, 1995: 301-315.
    [5] SCHLÜTER K. Review: Evaporation of mercury from soils. An integration and synthesis of current knowledge[J]. Environmental Geology, 2000, 39(3-4): 249-271.
    [6] 谷春豪, 许怀凤, 仇广乐. 汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学, 2013, 32(6): 926-936.

    GU C H, XU H F, QIU G L. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6): 926-936(in Chinese).

    [7] RVHLING A, TYLER G. An ecological approach to lead problem[J]. Botaniska Notiser, 1968, 121(3): 21.
    [8] TYLER G. Moss analysis: a method for surveying heavy metal deposition[C]. International Clean Air Congress, Proceedings,1971.
    [9] PANTIP K, WANNIDA S, AUJIMA P. Using thai native moss as bio-adsorbent for contaminated heavy metal in air[J]. Procedia-Social and Behavioral Sciences, 2015, 197: 1037-1042.
    [10] STEFAN N, ANNE H, ROLAND P, et al. Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics[J]. Atmospheric Environment, 2014, 99: 85-93.
    [11] 姜苹红, 罗远玲, 彭克俭, 等. 苔藓植物运用于大气重金属污染监测的研究进展[J]. 环境污染与防治, 2015, 37(7): 82-87.

    JIANG P H, LUO Y L, PENG K J, et al. Progress on the research of bryophytes applied to monitoring of air pollution by heavy metal[J]. Environmental Pollution & Control, 2015, 37(7): 82-87(in Chinese).

    [12] 张来, 张显强, 孙敏. 贵州万山汞矿区苔藓植物对汞的吸附和富集特征[J]. 环境科学, 2011, 32(6): 1734-1739.

    ZHANG L, ZHANG X Q, SUN M. Study on the characteristics of adsorption and enrichment of mercury by the mosses in mining districts in Wanshan Guizhou[J]. Environment Science, 2011, 32(6): 1734-1739(in Chinese).

    [13]
    [14] 仇广乐. 贵州典型汞矿地区汞的环境地球化学研究[D]. 贵阳: 中国科学院地球化学研究所博士学位论文, 2005. QIU G L. Environmental geochemistry of mercury in typical Hg-mined areas, Guizhou Province[D]. Guiyang: Institute of Geochemistry Chinese Academy of Sciences(Doctor Thesis), 2005(in Chinese).
    [15] WANG S, FENG X, QIU G, et al. Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China[J]. Atmospheric Environment, 2007, 41(27): 5584-5594.
    [16] WANG S, FENG X, QIU G. The study of mercury exchange rate between air and soil surface in Hongfeng reservoir region, Guizhou, PR China[C]. Journal de PhysiqueⅣ (Proceedings), EDP Sciences, 2003, 107: 1357-1360.
    [17] GRANGEON S, GUÉDRON S, ASTA J, et al. Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France)[J]. Ecological Indicators, 2012, 13(1): 178-183.
    [18] KRISHNA M V B, KARUNASAGAR D, ARUNACHALAM J. Study of mercury pollution near a thermometer factory using lichens and mosses[J]. Environmental Pollution, 2003, 124(3): 357-360.
    [19] 贵州省万山特区编委会. 万山特区志[M]. 贵州: 贵州人民出版社, 2011. Editorial board of wanshan SAR Guizhou Wanshan SAR[M]. Guizhou: Guizhou People's Publishing House, 2011(in Chinese).
    [20] 孙守琴. 苔藓对重金属的吸附特性及其在大气监测中的应用[D]. 重庆: 西南农业大学硕士学位论文, 2005. SUN S Q. Study on Bryophytes' adsorption character to heavy metal and it's use in atmospheric environmental monitoring[D]. Chongqing: Southwest Agricultural University(Master Thesis), 2005(in Chinese).
    [21] VANNINI A, NICOLARDI V, BARGAGLI R, et al. Estimating atmospheric mercury concentrations with lichens[J]. Environmental Science & Technology, 2014, 48(15): 8754-8759.
    [22] 李平, 冯新斌, 仇广乐, 等. 贵州省务川汞矿区土法炼汞过程中汞释放量的估算[J]. 环境科学, 2006, 27(5): 837-840.

    LI P, FENG X B, QIU G L, et al. Mercury emission from the indigenous method of mercury smelting in Wuchuan mercury mining areas, Guizhou Province[J]. Environmental Science, 2006, 27(5): 837-840(in Chinese).

    [23] EBINGHAUS R, KOCK H H, TEMME C, et al. Antarctic springtime depletion of atmospheric mercury[J]. Environmental Science & Technology, 2002, 36(6): 1238-1244.
    [24] LINDBERG S E, BROOKS S, LIN C J, et al. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise[J]. Environmental Science & Technology, 2002, 36(6): 1245-1256.
    [25] SCHROEDER W H, STEFFEN A, LAWSON G, et al. Mercury measurements at Alert[J]. Synopsis of Research Conducted Under the 2000/2001 Northern Contaminants Program, 2007, 130-135.
    [26] LAMBORG C H, FITZGERALD W F, O'DONNELL J, et al. A non-steady-state compartmental model of global-scale mercury biogeochemistry with inter hemispheric atmospheric gradients[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1105-1118.
    [27] 朱万泽, 付学吾, 冯新斌, 等. 青藏高原东南缘贡嘎山地区大气总汞时间序列分析及其影响因子[J]. 生态学报, 2007, 27(9): 3727-3737.

    ZHU W Z, FU X W, FENG X B, et al. Annual time-series analyses of total gaseous mercury measurement and its influence factors in the Gongga Mountain on the south-eastern fringe of the Tibetan Plateau, China[J]. Acta Ecologica Sinica, 2007, 27(9): 3727-3737(in Chinese).

    [28] 李平, 冯新斌, 仇广乐. 贵州省务川汞矿区汞污染的初步研究[J]. 环境化学, 2008, 27(1): 96-99.

    LI P, FENG X B, QIU G L. The preliminary study of mercury pollution in Wuchuan mercury mining area, Guizhou Province[J]. Environmental Chemistry, 2008, 27(1): 96-99(in Chinese).

    [29] FU X W, FENG X, DONG Z Q, et al. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2425-2437.
    [30] LOREDO J, SOTO J, ÁLVAREZ R, et al. Atmospheric monitoring at abandoned mercury mine sites in Asturias (NW Spain)[J]. Environmental Monitoring and Assessment, 2007, 130(1-3): 201-214.
    [31] RVHLING, ÂKE. Atmospheric heavy metal deposition in Europe:Estimation based on moss analysis[M]. Nordic Council of Ministers, 1994.
    [32] RICHARDSON D H S. The biology of mosses[M]. Oxford: Black Well Scientific Ublications,1981.
    [33] MARKERT B, WECKERT V. Use of Polytrichum formosum (moss) as a passive biomonitor for heavy metal pollution (cadmium, copper, lead and zinc)[J]. Science of the Total Environment, 1989, 86(3): 289-294.
    [34] QIU G, FENG X, WANG S, et al. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou Province, southwestern China[J]. Applied Geochemistry, 2005, 20(3): 627-638.
  • 加载中
计量
  • 文章访问数:  1067
  • HTML全文浏览数:  997
  • PDF下载数:  468
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-02-25
  • 刊出日期:  2016-10-15
曹阿翔, 敖明, 梁隆超, 徐晓航, 仇广乐, 陈卓. 天然石生苔藓汞含量及对大气汞污染的生物指示[J]. 环境化学, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505
引用本文: 曹阿翔, 敖明, 梁隆超, 徐晓航, 仇广乐, 陈卓. 天然石生苔藓汞含量及对大气汞污染的生物指示[J]. 环境化学, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505
CAO Axiang, AO Ming, LIANG Longchao, XU Xiaohang, QIU Guangle, CHEN Zhuo. Mercury concentration in epilithic mosses and its bio-indication of atmospheric mercury pollution[J]. Environmental Chemistry, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505
Citation: CAO Axiang, AO Ming, LIANG Longchao, XU Xiaohang, QIU Guangle, CHEN Zhuo. Mercury concentration in epilithic mosses and its bio-indication of atmospheric mercury pollution[J]. Environmental Chemistry, 2016, 35(10): 2204-2210. doi: 10.7524/j.issn.0254-6108.2016.10.2016022505

天然石生苔藓汞含量及对大气汞污染的生物指示

  • 1.  贵州师范大学化学与材料科学学院, 贵阳, 550001;
  • 2.  中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳, 550081;
  • 3.  贵州大学资源与环境工程学院, 贵阳, 550025;
  • 4.  中国科学院大学, 北京, 100049;
  • 5.  贵阳市大气细粒子和大气污染化学重点实验室, 贵阳, 550001
基金项目:

受贵州师范大学研究生创新基金(研创201516),国家重点基础研究发展计划项目(2013CB430004),国家自然科学基金(41573135),贵阳市科技计划项目(筑科合同[2011401]社6-3号),贵阳市科技计划项目(筑科合同[2012303]14号)资助.

摘要: 采集贵州万山汞矿区6属7种优势种类苔藓84个样品,测定其汞含量,同时现场监测部分苔藓采样点近地表大气汞,定量分析苔藓汞和大气汞质量浓度之间的关系.结果显示,研究区苔藓汞质量浓度范围为0.96-126 μg·g-1,平均值80±46 μg·g-1,受触媒生产、废触媒回收等涉汞化工厂生产活动影响显著;苔藓汞与大气汞呈正相关关系,表现为线性拟合相关性系数r=0.93(n=12,P=0.01030),多项式拟合相关性系数r=0.96(n=12,P=0.01169),对数拟合相关性系数r=0.96(n=12,P=0.00469);选择对数拟合方程估算苔藓采样点大气汞浓度,发现拟合得到的大气汞空间分布特征和实测苔藓汞空间分布特征基本一致,从而通过定量/半定量方法证明了可以利用苔藓汞指示大气汞污染,为汞污染场地修复过程中的大气汞污染评价提供了新思路.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回