台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征

何旭丹, 徐琳, 张春晖, 蔡亚岐. 台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征[J]. 环境化学, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602
引用本文: 何旭丹, 徐琳, 张春晖, 蔡亚岐. 台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征[J]. 环境化学, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602
HE Xudan, XU Lin, ZHANG Chunhui, CAI Yaqi. Pollution characteristics of methyl siloxanes in soil from an electronic waste(e-waste)dismantling area in Taizhou, China[J]. Environmental Chemistry, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602
Citation: HE Xudan, XU Lin, ZHANG Chunhui, CAI Yaqi. Pollution characteristics of methyl siloxanes in soil from an electronic waste(e-waste)dismantling area in Taizhou, China[J]. Environmental Chemistry, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602

台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征

  • 基金项目:

    中国科学院战略性先导科技专项(B类,XDB14010201)和国家自然科学基金(21407159)资助.

Pollution characteristics of methyl siloxanes in soil from an electronic waste(e-waste)dismantling area in Taizhou, China

  • Fund Project: Supported by the Strategic Priority Research Program of the Chinese Academy of Science(XDB14010201)and National Basic Research Program of China(21407159).
  • 摘要: 本文研究了浙江省台州温桥地区以姆坑为中心的电子垃圾拆解区域55个土壤样品中甲基硅氧烷分布特征和迁移规律.结果表明,该地区土壤中15种目标物(D4-D6、L5-L16)均有检出,浓度范围为0.66-3.01×103 ng·g-1,检出率为1.82%-100%.该区域土壤样品中环形硅氧烷总浓度的中位值(23.1 ng·g-1)和线形硅氧烷总浓度的中位值(238 ng·g-1)分别比台州非电子垃圾拆解地土壤样品高3.5和16.7倍,说明电子垃圾拆解可能是该区域土壤中甲基硅氧烷的重要来源.结合实际样品监测与室内模拟发现,一方面,由于挥发性较弱,线形甲基硅氧烷由污染源向周围土壤中迁移的能力弱于环形甲基硅氧烷;另一方面,由于较弱的挥发性和降解性,线形硅氧烷在污染源土壤中的持久性要强于环形硅氧烷.
  • 加载中
  • [1] Silicones Environmental, Health, and safety center of the american chemistry council (ACC)[EB/OL].[2016-4-10]. https://sehsc.americanchemistry.com.
    [2] HORⅡ Y, KANNAN K. Survey of organosilicones compounds, including cyclic and linear siloxanes, in personal-care and household products[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(4):701-710.
    [3] LASSEN C, HANSEN C L, MIKKELSEN S H, et al. Siloxanes-consumption, toxicity and alternatives[R]. Environmental Project, 2005, No. 1031.
    [4] FLASSBECK D, PFLEIDERER B, GRUMPING R, et al. Determination of low molecular weight silicones in plasma and blood of women after exposure to silicone gel-filled implants[J]. Analytical Chemistry, 2001, 73(3):606-611.
    [5] KALA S V, LYKISSA E D, LEBOVITZ R M, et al. Detection and characterization of poly (dimethylsiloxane)s in biological tissues by GC/AED and GC/MS[J]. Analytical Chemistry, 1997, 69(7):1267-1272.
    [6] LIEBIERMAN M W, LYKISSA E D, BARRIOS R, et al. Cyclosiloxanes produce fatal liver and lung damage in mice[J]. Environmental Health Perspectives, 1999, 107(2):161-165.
    [7] HE B, RHODES-BROWER S, MILLER M R, et al. Octamethyl cyclotetrasiloxane exhibits estrogenic activity in mice via ER alpha[J]. Toxicology and Applied Pharmacology, 2003, 192(3):254-261.
    [8] LINDA H, NICHOLAS A W, TONJE B, et al. Plasma concentrations of cyclic volatile methylsiloxanes (cVMS) in pregnant and postmenopausal norwegian women and self-reported use of personal care products (PCPs)[J]. Environment International, 2013, 51:82-87.
    [9] XU L, SHI Y L, CAI Y Q, et al. Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China[J]. Water Research, 2013, 47(2):715-724.
    [10] ZHAO Y X, QIN X F, LI Y, et al. Diffusion of polybrominateddiphenyl ether (PBDE) from an e-waste recycling area to the surrounding regions in Southeast China[J]. Chemosphere, 2009, 76(11):1470-1476.
    [11] ZHANG J H, MIN H. J. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area[J]. Hazardous Materials, 2009, 165(1):744-750.
    [12] TANG X J,SHEN C F, SHI D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling:An emerging e-waste recycling city in Taizhou area, China[J].Hazardous Materials, 2010, 173(1):653-660.
    [13] KAJ L, SCHLABACH M, ANDERSSON J, et al. Siloxanes in the nordic environment[R]. Nordic Council of Ministers, 2005.
    [14] WANG D G, STEER H, TAIT T, et al. Concentrations of cyclic volatile methyl-siloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada[J]. Chemosphere, 2013, 93(5):766-773.
    [15] SANCHEZ-BRUNETE C, MIGUEL E, ALBERO B, et al. Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(45):7024-7030.
    [16] COMPANIONI-DAMAS E Y, SANTOS F J, GALCERAN M T, et al. Analysis of linear and cyclic methylsiloxanes in sewage sludges and urban soils by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry[J]. Journal of chromatography A, 2012, 1268:150-156.
    [17] XU L, SHI Y L, WANG T, et al. Methyl siloxanes in environmental matrices around a siloxanes production facility, and their distributional and elimination in plasma of exposed population[J]. Environmental Science & Technology, 2012,46(2):11718-11726.
    [18] MCLACHLAN M S, KIERKEGAARD A, HANSEN K M, et al. Concentrations and fate of decamethylcyclopentasiloxane(D5) in the atmosphere[J]. Environmental Science & Technology, 2010, 44(14):5365-5370.
  • 加载中
计量
  • 文章访问数:  1014
  • HTML全文浏览数:  953
  • PDF下载数:  416
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-06
  • 刊出日期:  2016-11-15
何旭丹, 徐琳, 张春晖, 蔡亚岐. 台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征[J]. 环境化学, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602
引用本文: 何旭丹, 徐琳, 张春晖, 蔡亚岐. 台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征[J]. 环境化学, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602
HE Xudan, XU Lin, ZHANG Chunhui, CAI Yaqi. Pollution characteristics of methyl siloxanes in soil from an electronic waste(e-waste)dismantling area in Taizhou, China[J]. Environmental Chemistry, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602
Citation: HE Xudan, XU Lin, ZHANG Chunhui, CAI Yaqi. Pollution characteristics of methyl siloxanes in soil from an electronic waste(e-waste)dismantling area in Taizhou, China[J]. Environmental Chemistry, 2016, 35(11): 2287-2294. doi: 10.7524/j.issn.0254-6108.2016.11.2016040602

台州电子垃圾拆解地土壤中甲基硅氧烷的污染特征

  • 1.  中国矿业大学(北京)化学与环境工程学院, 北京, 100083;
  • 2.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

中国科学院战略性先导科技专项(B类,XDB14010201)和国家自然科学基金(21407159)资助.

摘要: 本文研究了浙江省台州温桥地区以姆坑为中心的电子垃圾拆解区域55个土壤样品中甲基硅氧烷分布特征和迁移规律.结果表明,该地区土壤中15种目标物(D4-D6、L5-L16)均有检出,浓度范围为0.66-3.01×103 ng·g-1,检出率为1.82%-100%.该区域土壤样品中环形硅氧烷总浓度的中位值(23.1 ng·g-1)和线形硅氧烷总浓度的中位值(238 ng·g-1)分别比台州非电子垃圾拆解地土壤样品高3.5和16.7倍,说明电子垃圾拆解可能是该区域土壤中甲基硅氧烷的重要来源.结合实际样品监测与室内模拟发现,一方面,由于挥发性较弱,线形甲基硅氧烷由污染源向周围土壤中迁移的能力弱于环形甲基硅氧烷;另一方面,由于较弱的挥发性和降解性,线形硅氧烷在污染源土壤中的持久性要强于环形硅氧烷.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回