[1]
|
FERNáNDEZ-GARCíA M, MARTíNEZ-ARIAS A, HANSON J C, et al. Nanostructured oxides in chemistry:Characterization and properties[J]. Chemical Reviews, 2004, 104(9):4063-4104.
|
[2]
|
ZENG H, SINGH A, ULRICH K, et al. Nanoscale size effects on uranium(Ⅵ) adsorption to hematite[J]. Environmental Science and Technology, 2009, 43(5):1373-1378.
|
[3]
|
MADDEN A, HOCHELLA M F JR. A test of geochemical reactivity as a function of mineral size manganese oxidation promoted by hematite nanoparticles[J]. Geochimica et Cosmochimica Acta, 2005, 69(2):389-398.
|
[4]
|
QAFOKU N P. Terrestrial nanoparticles and their controls on soil-/geo-processes and reactions[J]. Advances in Agronomy, 107:33-91.
|
[5]
|
WANG Z X, CHEN J Q, CHAI L Y, et al. Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China[J]. Journal of Hazardous Material, 190(1-3):980-985.
|
[6]
|
YU T R. Chemistry of variable charge soils[M]. New York:Oxford University Press, 1997:473-499.
|
[7]
|
WITTBRODT P R, PALMER C D. Reduction of Cr(Ⅵ) by soil humic acids[J]. European Journal of Soil Science, 1996, 48(1):151-162.
|
[8]
|
ECHIGO E, ARUGUETE D M, MURAYAMA M, et al. Influence of size, morphology, surface structure, and aggregation state on reductive dissolution of hematite nanoparticles with ascorbic acid[J]. Geochimica et Cosmochimica Acta, 2012, 90:149-162.
|
[9]
|
LANZL C A, BALTRUSAITIS J, CWIERTNY D M. Dissolution of hematite nanoparticle aggregates:Influence of primary particle size, dissolution mechanism, and solution pH[J]. Langmuir, 2012, 28(45):15797-15808.
|
[10]
|
SPARKS D L, PAGE A L, HELMKE P A, et al. Methods of soil analysis. Part 3. Chemical Methods[M]. Madison:Soil Science Society of America, Inc., 1996.
|
[11]
|
FENG X H, ZHAI, L M, TAN W F, et al. The controlling effect of pH on oxidation of Cr (Ⅲ) by manganese oxide minerals[J]. Journal of Colloid and Interface Science, 2006, 298(1):258-266.
|
[12]
|
CORNELL R M, SCHWERTMANN U. The iron oxides:Structure, properties, reactions, occurrences, and uses[M]. 2ed. Weinheim:Wiley-VCH Verlag, 2003.
|
[13]
|
ADEGOKE H I, AMOOADEKOLA F, FATOKI O S, et al.Adsorption of Cr (Ⅵ) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies[J]. Korean Journal of Chemical Engineering, 2014, 31(1):142-154.
|
[14]
|
HOFFMANN M M, DARAB J G, FULTON J L. An infrared and X-ray absorption study of the equilibria and structures of chromate, bichromate, and dichromate in ambient aqueous solutions[J]. Journal of Physical Chemistry A, 2001, 105(10):1772-1782.
|
[15]
|
SPOSITO G. The chemistry of soils[M]. 2ed. New York:Oxford University Press, 2008:195-214.
|
[16]
|
JOHNSON C P, CHRYSOCHOOU M. Mechanisms of chromate adsorption on hematite[J]. Geochimica et Cosmochimica Acta, 2014, 138:146-157.
|
[17]
|
STUMM W. Chemistry of the solid-water interface[M]. New York:John Wiley & Sons Inc., 1992:309-335.
|
[18]
|
XU R K, ZHAO A Z, JI G L. Effect of low molecular weight organic anions on surface charge of variable charge soils[J]. Journal of Colloid and Interface Science, 2003, 264(2):322-326.
|
[19]
|
ZHONG L Y, YANG J W, LIU L M, et al. Desferrioxamine-B promoted dissolution of an oxisol and the effect of low-molecular-weight organic acids[J]. Biology and Fertility of Soils, 2013, 49(8):1077-1083.
|