羟胺促进臭氧氧化降解阿特拉津

许可, 贲伟伟, 强志民. 羟胺促进臭氧氧化降解阿特拉津[J]. 环境化学, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604
引用本文: 许可, 贲伟伟, 强志民. 羟胺促进臭氧氧化降解阿特拉津[J]. 环境化学, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604
XU Ke, BEN Weiwei, QIANG Zhimin. Ozonation of atrazine enhanced by hydroxylamine[J]. Environmental Chemistry, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604
Citation: XU Ke, BEN Weiwei, QIANG Zhimin. Ozonation of atrazine enhanced by hydroxylamine[J]. Environmental Chemistry, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604

羟胺促进臭氧氧化降解阿特拉津

  • 基金项目:

    水体污染控制与治理重大专项(2012ZX07403-002-02)资助.

Ozonation of atrazine enhanced by hydroxylamine

  • Fund Project: Supported by Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07403-002-02).
  • 摘要: 臭氧(O3)能有效氧化去除废水中的微量有机污染物,但其较高的成本限制了在我国废水处理中的应用.因此,开发新型的O3高级氧化技术以提高O3的利用率,已成为亟待解决的问题.本研究发现,羟胺(NH2OH)可大幅提高连续流O3氧化去除农药阿特拉津(ATZ)的效率.与单独臭氧氧化体系相比,当[NH2OH]0:[O3]s(摩尔浓度比)=0.25时,反应3 min时的ATZ去除率([O3]s:[ATZ]0=10,pH 7.0)由37.9%提高至83.8%.当[NH2OH]0:[O3]s=0.25-0.75时,反应前3 min内的加速程度随NH2OH初始浓度的升高而降低,随后在0.75比例下的加速程度升高,这与[NH2OH]:[O3]s在反应过程中的持续降低及二级氧化剂生成的变化有关.二级氧化剂的生成种类和浓度主要受[NH2OH]0:[O3]s影响,有羟基自由基生成.反应3 min后,在0.25比例下二级氧化剂主要通过攻击ATZ的烷基等含碳基团加速其降解,0.75比例下二级氧化剂对含氯基团的攻击加剧.本研究将为利用NH2OH开发新型的O3高级氧化技术提供依据.
  • 加载中
  • [1] 叶新强, 鲁岩, 张恒. 除草剂阿特拉津的使用与危害[J]. 环境科学与管理, 2006, 31(8):95-97.

    YE X Q, LU Y, ZHANG H. The usage and permiciousness of the herbicide atrazine[J]. Environmental Science and Management, 2006, 31(8):95-97(in Chinese).

    [2] 刘延湘, 张旭, 邓凤霞. 叶绿素光敏化降解水中阿特拉津[J]. 环境化学, 2015, 34(9):1748-1751.

    LIU Y X, ZHANG X, DENG F X. Chlorophyll photosensitized degradation of atrazine in water[J]. Environmental Chemistry, 2015, 34(9):1748-1751(in Chinese).

    [3] REN J, JIANG K. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China[J]. Chinese Science Bulletin, 2002, 47(19):1612-1616.
    [4] BETHSASS J, COLANGELO A. European Union bans atrazine, while the United States negotiates continued use[J]. International Journal of Occupational and Environmental Health, 2006, 12(3):260-267.
    [5] KÖCK-SCHULMEYER M, VILLAGRASA M, DE ALDA M L, et al. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact[J]. Science of the Total Environment, 2013, 458-460:466-476.
    [6] HAYES T B, COLLINS A, LEE M, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8):5476-5480.
    [7] HAYES T B, KHOURY V, NARAYAN A, et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10):4612-4617.
    [8] JIANG H, ADAMS C. Treatability of chloro-s-triazines by conventional drinking water treatment technologies[J]. Water Research, 2006, 40(8):1657-1667.
    [9] 刘超, 强志民, 田芳, 等. 多类农药与紫外光、臭氧和高锰酸钾的反应活性研究[J]. 环境科学, 2009, 30(1):127-133.

    LIU C, QIANG Z M, TIAN F, et al. Reactivity of several classes of pesticides with UV, ozone and permanganate[J]. Environmental Science, 2009, 30(1):127-133(in Chinese).

    [10] ADAMS C D, RANDTKE S J. Removal of atrazine from drinking water by ozonation[J]. American Water Works Association, 1992, 84(9):91-102.
    [11] WILDHABER Y S, MESTANKOVA H, SCHÄRER M, et al. Novel test procedure to evaluate the treatability of wastewater with ozone[J]. Water Research, 2015, 75:324-335.
    [12] Wastewater technology fact sheet-ozone disinfection[R]. United States Environmental Protection Agency, Office of Water, Washington, D.C., 1999.
    [13] MARCE M, DOMENJOUD B, ESPLUGAS S, et al. Ozonation treatment of urban primary and biotreated wastewaters:Impacts and modeling[J]. Chemical Engineering Journal, 2016, 283:768-777.
    [14] LEE M J, ZIMMERMANN-STEFFENS S G, AREY J S, et al. Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations:The role of delocalized and localized molecular orbitals[J]. Environmental Science & Technology, 2015, 49(16):9925-9935.
    [15] DENISOVA T G, DENISOV E T. Reactivity of ozone as a hydrogen-atom acceptor in reactions with antioxidants[J]. Polymer Degradation and Stability, 1998, 60(2/3):345-350.
    [16] KHANCHANDANI S, SRIVASTAVA P K, KUMAR S, et al. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis[J]. Inorganic Chemistry, 2014, 53(17), 8902-8912.
    [17] ZHANG J, ZHANG Y L, SHI Y N, et al. Acceleration of ozone decompostition and·OH generation by hydroxylamine[J]. Ozone:Science & Engineering, 2016, 38(2):150-155.
    [18] 曹杰. 臭氧/羟胺体系氧化效能研究[D]. 哈尔滨:哈尔滨工业大学, 2014. CAO J. Research on oxidation efficiency of ozone/hydroxylamine system[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
    [19] MANDA S, NAKANISHI I, OHKUBO K, et al. Nitroxyl radicals:Electrochemical redox behavior and structure-activity relationships[J]. Organic & Biomolecular Chemistry, 2007, 5:3951-3955.
    [20] ADAMS C D, RANDTKE S J. Ozonation byproducts of atrazine in synthetic and natural waters[J]. Environmental Science & Technology, 1992, 26(11):2218-2227.
    [21] ACERO J L, STEMMLER K, VON GUNTEN U. Degradation kinetics of atrazine and its degradation products with ozone and OH radicals:A predictive tool for drinking water treatment[J]. Environmental Science & Technology, 2000, 34(4):591-597.
  • 加载中
计量
  • 文章访问数:  1514
  • HTML全文浏览数:  1407
  • PDF下载数:  458
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-05-16
  • 刊出日期:  2017-02-15
许可, 贲伟伟, 强志民. 羟胺促进臭氧氧化降解阿特拉津[J]. 环境化学, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604
引用本文: 许可, 贲伟伟, 强志民. 羟胺促进臭氧氧化降解阿特拉津[J]. 环境化学, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604
XU Ke, BEN Weiwei, QIANG Zhimin. Ozonation of atrazine enhanced by hydroxylamine[J]. Environmental Chemistry, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604
Citation: XU Ke, BEN Weiwei, QIANG Zhimin. Ozonation of atrazine enhanced by hydroxylamine[J]. Environmental Chemistry, 2017, 36(2): 207-213. doi: 10.7524/j.issn.0254-6108.2017.02.2016051604

羟胺促进臭氧氧化降解阿特拉津

  • 1.  中国科学院生态环境研究中心, 饮用水科学与技术重点实验室, 北京, 100085;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

水体污染控制与治理重大专项(2012ZX07403-002-02)资助.

摘要: 臭氧(O3)能有效氧化去除废水中的微量有机污染物,但其较高的成本限制了在我国废水处理中的应用.因此,开发新型的O3高级氧化技术以提高O3的利用率,已成为亟待解决的问题.本研究发现,羟胺(NH2OH)可大幅提高连续流O3氧化去除农药阿特拉津(ATZ)的效率.与单独臭氧氧化体系相比,当[NH2OH]0:[O3]s(摩尔浓度比)=0.25时,反应3 min时的ATZ去除率([O3]s:[ATZ]0=10,pH 7.0)由37.9%提高至83.8%.当[NH2OH]0:[O3]s=0.25-0.75时,反应前3 min内的加速程度随NH2OH初始浓度的升高而降低,随后在0.75比例下的加速程度升高,这与[NH2OH]:[O3]s在反应过程中的持续降低及二级氧化剂生成的变化有关.二级氧化剂的生成种类和浓度主要受[NH2OH]0:[O3]s影响,有羟基自由基生成.反应3 min后,在0.25比例下二级氧化剂主要通过攻击ATZ的烷基等含碳基团加速其降解,0.75比例下二级氧化剂对含氯基团的攻击加剧.本研究将为利用NH2OH开发新型的O3高级氧化技术提供依据.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回