天然有机质模型化合物在无机矿物表面的吸附

郭惠莹, 梁妮, 周丹丹, 刘洋, 吴敏, 潘波. 天然有机质模型化合物在无机矿物表面的吸附[J]. 环境化学, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601
引用本文: 郭惠莹, 梁妮, 周丹丹, 刘洋, 吴敏, 潘波. 天然有机质模型化合物在无机矿物表面的吸附[J]. 环境化学, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601
GUO Huiying, LIANG Ni, ZHOU Dandan, LIU Yang, WU Min, PAN Bo. Adsorption mechanisms of natural organic matter model compounds on inorganic minerals[J]. Environmental Chemistry, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601
Citation: GUO Huiying, LIANG Ni, ZHOU Dandan, LIU Yang, WU Min, PAN Bo. Adsorption mechanisms of natural organic matter model compounds on inorganic minerals[J]. Environmental Chemistry, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601

天然有机质模型化合物在无机矿物表面的吸附

  • 基金项目:

    国家自然科学基金(41473116)和云南省应用基础研究计划(2013FZ004)资助.

Adsorption mechanisms of natural organic matter model compounds on inorganic minerals

  • Fund Project: Supported by the National Natural Science Foundation of China (41473116)and Applied Basic Research Program of Yunnan Province (2013FZ004).
  • 摘要: 天然有机质(NOM)在全球碳循环中扮演重要角色,而无机矿物对有机碳稳定具有重要作用.本实验以Fe2O3(纳米和微米颗粒)和高岭土为吸附剂,探讨复杂多组分NOM模型化合物(单宁酸、没食子酸、富马酸钠和油酸钠)在无机矿物表面的吸附稳定机理.结果表明,4种不同性质的模型化合物在矿物表面均呈现明显的非线性吸附.纳米氧化铁较大的比表面积能够提供更多的吸附位点,有利于其对模型化合物的吸附,但是其比表面积的有效性最低,显示其极大的吸附潜力.不管是芳香性还是脂肪性化学物质,大分子模型化合物的吸附显著高于小分子模型化合物,说明NOM的模型化合物中大分子组分更倾向于吸附在无机矿物表面,这一现象提示NOM在无机矿物表面发生选择性吸附时,有可能优先吸附大分子组分.
  • 加载中
  • [1] KAISER K, GUGGENBERGER G. Mineral surfaces and soil organic matter[J]. European Journal of Soil Science, 2003, 54(2):219-236.
    [2] SAENGER A, C CILLON L, POULENARD J, et al. Surveying the carbon pools of mountain soils:A comparison of physical fractionation and Rock-Eval pyrolysis[J]. Geoderma, 2015, 241:279-288.
    [3] KEIL R G, MAYER L M. Mineral matrices and organic matter[J]. Nature, 2014,12:337-357.
    [4] KAHLE M, KLEBER M, JAHN R. Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties[J]. Organic Geochemistry, 2004, 35(3):269-276.
    [5] MIKUTTA R, MIKUTTA C, KALBITZ K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2569-2590.
    [6] KALBITZ K, SCHWESIG D, RETHEMEYER J, et al. Stabilization of dissolved organic matter by sorption to the mineral soil[J]. Soil Biology and Biochemistry, 2005, 37(7):1319-1331.
    [7] LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388):198-200.
    [8] BERNER R A. The long-term carbon cycle, fossil fuels and atmospheric composition[J]. Nature, 2003, 426(6964):323-326.
    [9] 衡利沙, 王代长, 蒋新, 等. 黄棕壤铁铝氧化物与土壤稳定性有机碳和氮的关系[J]. 环境科学, 2010, 31(11):2748-2755.

    HENG L S, WANG D C, JIANG X, et al. Ralationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils[J]. Environmental Science, 2010, 31(11):2748-2755(in Chinese).

    [10] TOURINHO P S, VAN GESTEL C A, LOFTS S, et al. Metal-based nanoparticles in soil:Fate, behavior, and effects on soil invertebrates[J]. Environmental Toxicology And Chemistry, 2012, 31(8):1679-1692.
    [11] WANG Z, YU X, PAN B, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes[J]. Environmental Science & Technology, 2009, 44(3):978-984.
    [12] LALL A A, RONG W Z, MADLER L, et al. Nanoparticle aggregate volume determination by electrical mobility analysis:Test of idealized aggregate theory using aerosol particle mass analyzer measurements[J]. Journal of Aerosol Science, 2008, 39(5):403-417.
    [13] PAN B, XING B. Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. Ⅰ. Several concerns regarding pseudo-first order and pseudo-second order models[J]. Journal of Soils and Sediments, 2010, 10(5):838-844.
    [14] PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24):9005-9013.
    [15] 刘茜. 胡敏酸-氧化铁-高岭石复合体的形成与表征[D]. 武汉:华中农业大学, 2009. LIU Q. Interaction between humic acid, iron oxides and kaolinite, and their characteristics[D]. Wuhan:Huazhong Agricultural University, 2009(in Chinese).
    [16] GU B, SCHMITT J, CHEN Z, et al. Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models[J]. Environmental Science & Technology, 1994, 28(1):38-46.
    [17] YANG K, LIN D, XING B. Interactions of humic acid with nanosized inorganic oxides[J]. Langmuir, 2009, 25(6):3571-3576.
    [18] 韩兰芳, 孙可, 康明洁, 等. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11):1811-1820.

    HAN L F, SUN K, KANG M J, et al. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Enviromental Chemistry, 2014, 33(11):1811-1820(in Chinese).

    [19] 吴宏海, 张秋云, 方建章, 等. 高岭石和硅/铝-氧化物对腐殖酸的吸附实验研究[J]. 岩石矿物学杂志, 2003, 22(2):173-176.

    WU H H, ZHANG Q Y, FANG J Z, et al. A experimental study of the humic acid sorption on kaolinite and Si/Al-oxide minerals[J]. Acta Petrologica et Mineralogica, 2003, 22(2):173-176(in Chinese).

    [20] KHALAF M, KOHL S D, KLUMPP E, et al. Comparison of sorption domains in molecular weight fractions of a soil humic acid using solid-state 19F NMR[J]. Environmental Science & Technology, 2003, 37(13):2855-2860.
    [21] 张梦妍, 包承宇, 陈静文, 等. 化学氧化剂(H2O2, NaOCl)作用下高岭土-胡敏酸复合体中有机碳的稳定性[J]. 环境化学, 2014, 33(7):1149-1154.

    ZHANG M Y, BAO C Y, CHEN J W, et al. The stabilization of organic carbon in humic acid-kaolin complex by chemical oxidants[J]. Enviromental Chemistry, 2014, 33(7):1149-1154(in Chinese).

    [22] 李爱民, 朱燕, 代静玉, 等. 胡敏酸在高岭土上的吸附行为[J]. 岩石矿物学杂志, 2005, 24(2):145-150.

    LI A M, ZHU Y, DAI J Y, et al. The adsorption behavior of humic acid on kaolin[J]. Acta Petrologica et Mineralogica, 2005, 24(2):145-150(in Chinese).

    [23] BALCKE G U, KULIKOVA N A, HESSE S, et al. Adsorption of humic substances onto kaolin clay related to their structural features[J]. Soil Science Society of America Journal, 2002, 66(6):1805-1812.
  • 加载中
计量
  • 文章访问数:  1234
  • HTML全文浏览数:  1157
  • PDF下载数:  604
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-07-06
  • 刊出日期:  2017-03-15
郭惠莹, 梁妮, 周丹丹, 刘洋, 吴敏, 潘波. 天然有机质模型化合物在无机矿物表面的吸附[J]. 环境化学, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601
引用本文: 郭惠莹, 梁妮, 周丹丹, 刘洋, 吴敏, 潘波. 天然有机质模型化合物在无机矿物表面的吸附[J]. 环境化学, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601
GUO Huiying, LIANG Ni, ZHOU Dandan, LIU Yang, WU Min, PAN Bo. Adsorption mechanisms of natural organic matter model compounds on inorganic minerals[J]. Environmental Chemistry, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601
Citation: GUO Huiying, LIANG Ni, ZHOU Dandan, LIU Yang, WU Min, PAN Bo. Adsorption mechanisms of natural organic matter model compounds on inorganic minerals[J]. Environmental Chemistry, 2017, 36(3): 564-571. doi: 10.7524/j.issn.0254-6108.2017.03.2016070601

天然有机质模型化合物在无机矿物表面的吸附

  • 1. 昆明理工大学环境科学与工程学院, 环境土壤科学重点实验室, 昆明, 650500
基金项目:

国家自然科学基金(41473116)和云南省应用基础研究计划(2013FZ004)资助.

摘要: 天然有机质(NOM)在全球碳循环中扮演重要角色,而无机矿物对有机碳稳定具有重要作用.本实验以Fe2O3(纳米和微米颗粒)和高岭土为吸附剂,探讨复杂多组分NOM模型化合物(单宁酸、没食子酸、富马酸钠和油酸钠)在无机矿物表面的吸附稳定机理.结果表明,4种不同性质的模型化合物在矿物表面均呈现明显的非线性吸附.纳米氧化铁较大的比表面积能够提供更多的吸附位点,有利于其对模型化合物的吸附,但是其比表面积的有效性最低,显示其极大的吸附潜力.不管是芳香性还是脂肪性化学物质,大分子模型化合物的吸附显著高于小分子模型化合物,说明NOM的模型化合物中大分子组分更倾向于吸附在无机矿物表面,这一现象提示NOM在无机矿物表面发生选择性吸附时,有可能优先吸附大分子组分.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回