浮石负载纳米零价铁去除水相中的砷(Ⅴ)
Removal of arsenic (V) from aqueous solutions using improved nanoscale zero-valent iron on pumice
-
摘要: 废水中的砷是最具毒性的环境污染物之一.为了更好地利用纳米零价铁(Nanoscale Zero-Valent Iron,NZVI)修复水体污染,本文进行了浮石负载NZVI去除水相中As(V)的研究.利用环境扫描电镜(SEM)和透射电子显微镜(TEM)对浮石负载纳米零价铁(P-NZVI)的形态和粒度进行表征分析,根据批试验和间歇试验探究反应条件对去除效果的影响,并通过对照P-NZVI与As(V)溶液反应前后的样品的X射线光电子能谱(XPS),结合XPS Fe2p和XPS As3d窄轨道图谱,探讨P-NZVI对水相中As(V)的去除机理.研究结果表明,制备所得NZVI颗粒平均粒径30.6 nm,分散在浮石表面.利用BET-N2法检测得到P-NZVI的比表面积为32.2 m2·g-1(NZVI含量0.28 g,质量比7.7%).P-NZVI对As(V)的去除率随初始pH值、反应温度、As(V)初始质量浓度的升高而降低,反应符合准一级和准二级动力学方程.初始As(V)浓度为100 mg·L-1时,P-NZVI的平衡时吸附量为35.7 mg·g-1.P-NZVI对As(V)的去除机理包括吸附、沉淀和共沉淀作用.Abstract: Nanoscale zero-valent Iron (NZVI) was successfully coated onto pumice support (P-NZVI). It was used for the removal of arsenic (V), which is one of the most toxic waste-water pollutants. P-NZVI characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that NZVI was dispersed on pumice. NZVI particles were nearly spherical in shape with a mean diameter of 30.6 nm, which demonstrated that pumice was effective in preventing NZVI particles from agglomerating. P-NZVI with a 7.7% NZVI mass fraction had a specific surface area (SBET) of 32.2 m2·g-1. The influence of experimental factors on As (V) removal was investigated by batch experiments. The results showed that As (V) was removed by P-NZVI adsorption rapidly with high removal rate (more than 99%) over a wide range of pH (3.10-12.54) and concentrations (20-100 mg·L-1). The removal mechanism of As (V) by P-NZVI was investigated by comparing the X-ray photo-electron spectroscopic intensity (including XPS Fe2p and XPS As3d) of the samples before and after reacting with P-NZVI. Our results indicated that P-NZVI might be an effective material for both in situ and ex situ remediation of As(V).
-
Key words:
- pumice-nanoscale zero-valent iron /
- arsenic(V) /
- waste-water /
- removal mechanism.
-
[1] 苑宝玲,李坤林,邢核,等.饮用水砷污染治理研究进展[J].环境保护科学,2006,32(1):17-19. YUAN B L, LI K L, XING H, et al. Review of removal of arsenic contaminations from drinking water[J].Environmental Protection Science, 2006,32(1):17-19(in Chinese).
[2] ITZIAR A, JAVIER H A, CARLOS G. Plants against the global epidemic of arsenic poisoning[J].Environment International, 2004, 30(7):949-951. [3] XIA Y, LIU J. An overview on chronic arsenic via drinking water in China[J]. Toxicology, 2004, 198(1-3):25-29. [4] SUN G. Arsenic contamination and arsenicsis in China[J].Toxicology Applied Pharmacology,2004,198(3):268-271. [5] PONDER S M, DRAB J G, MALLOUK T E. Remediation of Cr(VI)and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron[J].Environmental Science & Technology, 2000, 34(12):2564-2569. [6] LEWIS R D, CONDOOR S, BATEK J, et al. Removal of lead contaminated dusts from hard surfaces[J].Environmental Science & Technology, 2006, 40(2):590-594. [7] KANEL S R, GRENECHE J M, CHOI. Arsenic (V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material[J].Environmental Science & Technology,2006,40(6):2045-2050. [8] LIU Q, BEI Y, ZHOU F. Removal of Pb(Ⅱ) from aqueous solution with amino-functionalized nanoscale zero-valent iron[J].Central European Journal of Chemistry, 2009, 7(1):79-82. [9] CAO J, ZHANG W X. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles[J].Journal of Hazardous Materials, 2006, 132(2):213-219. [10] 张玉荣,吴杰,朱慧杰,等.纳米铁负载材料应用研究[J].河南城建学院学报,2012,21(1):35-39. ZHANG Y R, WU J, ZHU H J, et al. Research on Nano iron immobilization.[J]. Journal of Henan University of Urban Construction, 2012, 21(1):35-39(in Chinese).
[11] 柳听义,赵林,谭欣,等. 纳米零价铁去除垃圾渗滤液中铬(Ⅵ)的性能及机理研究[J].环境化学,2010,29(3):429-433. LIU T Y, ZHAO L, TAN X, et al. Batch removal efficiency of Cr(Ⅵ) from landfill leachates by nano zero-valent iron and its mechanism[J].Environmental Chemistry, 2010, 29(3):429-433(in Chinese).
[12] LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury (Ⅱ) and chromium (VI) from wastewater using a new and effective composite:Pumice-supported nanoscale zero-valent iron[J].Chemical Engineering Journal, 2014, 245(1):34-40. [13] WESLEY L D. Determination of specific gravity and void ratio of pumice materials[J].ASTM geotechnical testing journal, 2001, 24(4):418-422. [14] KITIS M,KAPLAN S.S,KARAKAYA E, et al. Adsorption of natural organic matter from waters by iron coated pumice[J]. Chemosphere, 2007(66):130-138. [15] BALAGUER M D, VICENT M T,PARIS J M. A comparison of different support materials in anaerobic fluidized bed reactors for the treatment of vinasse[J].Environmental Science & Technology, 1997, 36(18):539-544. [16] LI Z,KIRK H J, ZHANG P, et al. Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets[J].Chemosphere, 2003, 68(12):1861-1866. [17] SHI L N, ZHANG X, CHEN Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J].Water Research, 2011, 45:886-892. [18] LIU T Y, YANG X, WANG Z L, et al. Enhanced chitosan beads-supported Fe0-nanoparticles for removal of metals from electroplating wastewater in permeable reactive barriers[J].Water Research, 2013, 47(17):6691-6700. [19] AKBAL F O, AKDEMIR N,OMAR A N. FT-IR spectroscopic detection of pesticide after sorption onto modified pumice[J]. Talanta, 2000, 53:131-135. [20] YAVUZ M, GODE F, PEHLIVAN E, et al. An economic removal of Cu2+ and Cr3+ on the new adsorbents:Pumice and polyacrylonitrile/pumice composite[J].Chemical Engineering Science, 2008, 137:453-461. [21] ZHANG X, LIN S,CHEN Z, et al. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution:Reactivity, characterization and mechanism[J].Water Research, 2011, 45:3481-3488. [22] SHI L N, ZHANG Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.[J]Water Research, 2011, 45:886-892. [23] CHUANG F W, LARSON R A, WESSMAN M S. Zero-valent iron-promoted dechlorination of polychlorinated biphenyls[J]. Environmental Science & Technology, 1995, 29(9):2460-2463. [24] WU D L,SHEN Y H,DING A Q, et al. Phosphate removal from aqueous solutions by nanoscale zero-valent iron.[J]Environmental Science & Technology,2013,34(18):2663-2669. [25] KIM Y H,KIM C M,CHOI I H, et al. Arsenic removal using mesoporous alumina prepared via a templating method[J].Environmental Science & Technology, 2004, 38(3):924-931. [26] ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J].Journal of Hazardous Materials, 2009, 172(2-3):1591-1596. [27] LUO X B,WANG C C,LUO S L, et al. Adsorption of As(Ⅲ) and As(Ⅴ) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nano-composites[J].Chemical Engineering Journal, 2012, 187:45-52. [28] 赵振国.吸附作用应用原理[M].北京:化学工业出版社, 2005. ZHAO Z G. Application of the Principle of Adsorption[M].Beijing:Chemical Industry Press, 2005(in Chinese). [29] ALOWITZ M J, SCHERER M M. Kinetics of nitrate, nitrite, and Cr(Ⅵ) reduction by iron metal[J].Environmental Science & Technology, 2002, 36(3):299-306. [30] HO Y.S. Second-order kinetic modal for the absorption of cadmium onto tree fern:a comparison of linear and nonlinear methods[J].Water Research,2006,40(1):119-125. [31] LIU T Y, WANG Z L, SUN Y. Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from waster[J].Chemical Engineering Journal, 2015, 263:55-61. [32] LI Z, JONES Z L, ZHANG P P, et al. Chromate transport through columns packed with surfacant-modified zeolite/zero-velant iron[J].Chemosphere, 2007, 68:55-61. [33] SU C, PULS R W. Arsenate and arsenite removal by zero-valent iron:Kinetics, red ox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(1):1487-1492. [34] CHATTERJEE S, LEE D S, LEE M W, et al. Nitrate removal from aqueous solutions by cross linked chitosan beads conditioned with sodium bisulfate[J].Journal of Hazardous Materials, 2009, 166(1):508-513. [35] BODDU V M, ABBURI K, TALBOTT J L, et al. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent[J].Environmental Science & Technology, 2003, 37(19):4449-4456. [36] LIEN H L, ZHANG W X. Nanoscale iron particles for compete reduction of chlorinated ethane.[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 191(1):97-105. [37] LIU T, RAO P, MAK M S, et al. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate[J].Water Research, 2009, 43(9):2540-2548. [38] MONDAL P, MAJUMDER C B, MOHANTY B. Effects of adsorbent dose its particle size and initial arsenic concentration on the removal of arsenic iron and manganese from simulated ground water by Fe3+ impregnated activated carbon[J].Journal of Hazardous Materials, 2008, 150:695-702. [39] PONDER S M, DARAB J G,MALLOUK T E. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, Nanoscale zero-valent iron[J].Environmental Science & Technology, 2000, 34(12):2564-2569.
计量
- 文章访问数: 868
- HTML全文浏览数: 790
- PDF下载数: 464
- 施引文献: 0