挥发性有机污染物甲硫醇治理方法及反应过程研究进展
Treatment methods and reaction processes of volatile organic pollutants methyl mercaptan
-
摘要: 甲硫醇(CH3SH)作为一种典型的挥发性含硫有机污染物(SVOCs),具有很强的毒性,其存在会对环境和人体健康以及生产生活造成严重的危害.随着我国环保工作的深入开展,加强甲硫醇治理研究工作刻不容缓.本文介绍了甲硫醇治理的常见方法,主要包括物理法、化学法和生物法,并对催化法反应过程以及反应机理进行了探究.通过对比分析各治理方法的优缺点,指出催化分解法在甲硫醇治理方面具有显著的优势和重要的研究前景.合理调控催化剂的酸碱性能、有效提高催化剂的氧化还原性能、构建高性能催化剂将是催化分解法处理甲硫醇研究方向的重点.Abstract: Methyl mercaptan(CH3SH) is one of the representative sulfur-containing volatile organic compounds (SVOCs) with high toxicity and very low olfactory threshold, which is harmful to human health and can cause corrosive effects on environment. The development of efficient processes to reduce this emissions is highly required. The present review highlights recent major progress in the development of different methods for CH3SH treatment, which includes physical, chemical and biological processes. Furthermore, the specific reaction processes and mechanistic investigations for the catalytic treatment method are discussed and the advantages and disadvantages of different methods are compared. As a result, it is recommended that catalytic decomposition method is the most promising way to treat CH3SH emissions. In addition, the dependence of catalytic activity on some key influencing factors, including acid-base and redox properties are developed to prepare the catalysts with high performance, which has gained much attention in this field.
-
-
[1] SANG C K,WANG G S. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B Environmental,2010,98(3/4):180-185. [2] PIUMETTI M,FINO D,RUSSO N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs[J]. Applied Catalysis B Environmental,2015,163:277-287. [3] SONG X,LI H,LI C,et al. Effects of VOCs from leaves of Acer truncatum Bunge and Cedrus deodara on human physiology and psychology[J].Urban Forestry & Urban Greening,2016,19:29-34. [4] KIM D Y,KIM J W. Development of a speciated,hourly,and gridded air pollutants emission modeling system-a case study on the precursors of photochemical smog in the Seoul metropolitan area, Korea[J]. Journal of the Air & Waste Management Association,2000,50(3):340-347. [5] VOLKAMER R,JIMENEZ J L,MARTINI F S,et al. Secondary organic aerosol formation from anthropogenic air pollution:Rapid and higher than expected[J]. Geophysical Research Letters,2006,33:L17811. [6] ZHAO S,YI H,TANG X,et al. Methyl mercaptan removal from gas streams using metal-modified activated carbon[J]. Journal of Cleaner Production,2015,87(1):856-861. [7] LAOSIRIPOJANA N,ASSABUMRUNGRAT S. Conversion of poisonous methanethiol to hydrogen-rich gas by chemisorption/reforming over nano-scale CeO2:The use of CeO2 as catalyst coating material[J]. Applied Catalysis B Environmental,2011,102(1-2):267-275. [8] WU T,WANG X M,LI D J,et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes[J]. Atmospheric Environment,2010,44(39):5065-5071. [9] WHELAN M E,MIN D H,RHEW R C. Salt marsh vegetation as a carbonyl sulfide (COS) source to the atmosphere[J]. Atmospheric Environment,2013,73(6):131-137. [10] BRUHL C,LELIEVELD J,CRUTZEN P J,et al. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate[J]. Atmospheric Chemistry & Physics,2012,12:1239-1253. [11] KORIAKIN A,KIM Y H,LEE C H. Adsorptive desulfurization of natural gas using lithium-modified mesoporous silica[J]. Industrial & Engineering Chemistry Research,2012,51(44):14489-14495. [12] 李珊红,李彩亭,谭娅,等. 恶臭气体的治理技术及其进展[J]. 四川环境,2005,24(4):45-49. LI S H,LI C T,TANG Y,et al. Technologies of offensive gas treatment and their new development[J]. Sichuan Environment,2005,24(4):45-49(in Chinese).
[13] 王亚恩, 易红宏, 唐晓龙,等. 甲硫醇气体治理方法的研究进展[J]. 现代化工,2016,36(6):37-41. WANG Y E,YI H H,TANG X L,et al. Research progress of treatment methods for methyl mercaptan[J]. Modern Chemical Industry,2016,36(6):37-41(in Chinese).
[14] MULLINS D R,MCDONALD T S. Adsorption and reaction of methanethiol on thin-film cerium oxide[J]. Surface Science,2008,602(6):1280-1287. [15] KOIVIKKO N,LAITINEN T,OJALA S. Formaldehyde production from methanol and methyl mercaptan over titania and vanadia based catalysts[J]. Applied Catalysis B Environmental,2011,103(1):72-78. [16] NA L,HONG T Y,YAN S,et al. Water absorption and photocatalytic activity of TiO2 in a scrubber system for odor control at varying pH[J]. Separation & Purification Technology,2012,90(18):196-203. [17] 杨世迎,王雷雷,冯琳玉,等. 湿式洗涤/过氧化物氧化法脱除甲硫醇恶臭气体:H2O2、过二硫酸盐、过一硫酸氢盐的比较[J]. 环境化学,2014,33(1):81-86. YANG S Y,WANG L L,FENG L Y,et al. Wet scrubbing process for methyl mercaptan odor treatment with peroxides:Comparion of hydrogen peroxide,persulfate,and peroxymonosulfate[J]. Environmental Chemistry, 2014,33(1):81-86(in Chinese).
[18] 杨世迎,冯琳玉,王雷雷,等. pH对过一硫酸氢盐湿法氧化去除甲硫醇恶臭气体的影响[J]. 环境科学学报,2014,34(12):3138-3143. YANG S Y,FENG L Y,WANG L L,et al.Influence of pH on wet scrubbing oxidation of methyl mercaptan by peroxymonosulfate[J].Acta Scientiae Circumstantiae,2014,34(12):3138-3143(in Chinese).
[19] DING L,LIANG H C,LI X Z. Oxidation of CH3SH by in situ generation of ferrate(Ⅵ) in aqueous alkaline solution for odour treatment[J]. Separation & Purification Technology,2012,91(19):117-124. [20] CACERES M,MORALES M,MARTIÍN R S,et al. Oxidation of volatile reduced sulphur compounds in biotrickling filter inoculated with Thiobacillus thioparus[J]. Electronic Journal of Biotechnology,2010,13(5):292-300. [21] 龚娟,焦以飞,苏庆泉,等. 沼气中甲硫醇的两段深度脱除法[J]. 现代化工,2013,33(11):97-100. GONG J,JIAO Y F,SU Q Q,et al. A two-stage method for deep removal of methyl mercaptan in biogas[J]. Modern Chemical Industry,2013,33(11):97-100(in Chinese).
[22] 赵银中. 恶臭气体危害及其处理技术[J]. 广东化工,2014,41(13):170-171. ZHAO Y Z. Harmfulness of malodorous gas and its treatment technology[J]. Guangdong Chemical Industry,2014,41(13):170-171(in Chinese).
[23] 温志刚,张桂华. 挥发性有机物治理技术进展[J]. 煤炭与化工,2016,39(8):11-14. WEN Z G,ZHANG G H. Treatment technology development of VOCs[J]. Coal and Chemical Industry,2016,39(8):11-14(in Chinese).
[24] 魏明蓉,张华,陆燕勤. 污水厂恶臭气体治理技术概述[J]. 广西轻工业,2010,26(8):100-101. WEI M R,ZHANG H,LU Y Q. Overview of odor control technology in wastewater treatment plant[J]. Guangxi Journal of Light Industry,2010,26(8):100-101(in Chinese).
[25] HUGUET E,COQ B,DURAND R,et al. A highly efficient process for transforming methyl mercaptan into hydrocarbons and H2S on solid acid catalysts[J]. Applied Catalysis B Environmental,2013,134-135(17):344-348. [26] HULEA V,HUGUET E,CAMMARANO C,et al. Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts-A comparative study[J]. Applied Catalysis B Environmental,2014,144(2):547-553. [27] MUKOYAMA T,SHIMODA N,SATOKAWA S. Catalytic decomposition of methanethiol to hydrogen sulfide over TiO2[J]. Fuel Processing Technology,2015,131:117-124. [28] 郝湖生,何德东,陆继长,等. 铈改性对HZSM-5分子筛表面性质及其催化降解甲硫醇(CH3SH)的研究[J]. 中国稀土学报,2016,34(3):265-272. HAO H S,HE D D,LU J C,et al. Study on the surface properties of HZSM-5 zeolite modified by cerium and its catalytic degradation of methyl mercaptan (CH3SH)[J]. Journal of the Chinese Society of Rareearths,2016,34(3):265-272(in Chinese).
[29] HE D D,HAO H S,CHEN D K,et al. Effects of rare-earth (Nd, Er and Y) doping on catalytic performance of HZSM-5 zeolite catalysts for methyl mercaptan (CH3SH) decomposition[J]. Applied Catalysis A General,2017,533:66-74. [30] HE D D,HAO H S,CHEN D K,et al. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catalysis Today,2017,281:559-565. [31] HE D D,WAN G P,HAO H S,et al. Microwave-assisted rapid synthesis of CeO2 nanoparticles and its desulfurization processes for CH3SH catalytic decomposition[J]. Chemical Engineering Journal,2016,289:161-169. [32] TOOSI M R,PEYRAVI M H,SAJADI J,et al. Photocatalytic purification of wastewater polluted by odorant sulfur compounds using titanium oxide in a continuous photoreactor[J]. International Journal of Chemical Reactor Engineering,2013,11(1):561-567. [33] LIU T X,LI X Z,LI F B. AgNO3-lnduced photocatalytic degradation of odorous methyl mercaptan in gaseous phase:Mechanism of chemisorption and photocatalytic reaction[J]. Environmental Science & Technology,2008,42(12):4540-4545. [34] TANIZAKI T,MURAKAMI Y,HANADA Y,et al. Titanium dioxide (TiO2)-assisted photocatalytic degradation of volatile organic compounds at ppb level[J]. Journal of Health Science,2007,53(5):514-519. [35] LI X Z,HOU M F,LI F B,et al. Photocatalytic oxidation of methyl mercaptan in foul gas for odor control[J]. Industrial & Engineering Chemistry Research,2006,45(2):487-494. [36] MOUAMMINE A,OJALA S,PIRAULT-ROY L,et al. Catalytic partial oxidation of methanol and methyl mercaptan:Studies on the selectivity of TiO2 and CeO2 supported V2O5 catalysts[J]. Topics in Catalysis,2013,56(9-10):650-657. [37] [38] COUVERT A,CHARRON I,LAPLANCHE A,et al. Treatment of odorous sulphur compounds by chemical scrubbing with hydrogen peroxide-Application to a laboratory plant[J]. Chemical Engineering Science,2006,61(22):7240-7248. [39] YANG S Y,LI Y,WANG L L,et al. Use of peroxymonosulfate in wet scrubbing process for efficient odor control[J]. Separation & Purification Technology,2016,158:80-86. [40] 杨世迎,王雷雷,冯琳玉,等. 过二硫酸盐降解碱液吸收的甲硫醇恶臭[J]. 环境科学,2013,34(11):4178-4185. YANG S Y,WANG L L,FENG L Y,et al. Degradation of the absorbed methyl mercaptan by persulfate in alkaline solution[J]. Environmental Science,2013,34(11):4178-4185(in Chinese).
[41] MUTHURAMAN G,CHUNG S J,MOON I S. The combined removal of methyl mercaptan and hydrogen sulfide via an electro-reactor process using a low concentration of continuously regenerable Ag(Ⅱ) active catalyst[J]. Journal of Hazardous Materials,2011,193(1):257-263. [42] GOVINDAN M,MOON I S. A single catalyst of aqueous CoⅢ for deodorization of mixture odor gases:A development and reaction pathway study at electro-scrubbing process[J]. Journal of Hazardous Materials,2013,260(6):1064-1072. [43] YANG E L,SHI J J,LIANG H C. On-line electrochemical production of ferrate (Ⅵ) for odor control[J]. Electrochimica Acta,2012,63:369-374. [44] DING L,LIU T X,LI X Z. Removal of CH3SH with in-situ generated ferrate(Ⅵ) in a wet-scrubbing reactor[J]. Journal of Chemical Technology & Biotechnology,2013,89(3):455-461. [45] 叶杰旭,诸葛蕾,蔡武,等. 甲硫醇降解菌群筛选及其降解特性研究[J]. 环境科学学报,2017,37(7):2572-2578. YE J X,ZHU G L,CAI W,et al. Enrichment of a methanthiol-degradation mixed microbial consortium and Its degradation characteristics[J]. Acta Scientiae Circumstantiae, 2017,37(7):2572-2578(in Chinese).
[46] 刘波,闫懂懂,毕雪梅. 甲硫醇脱臭菌的分离、分子鉴定及应用[J]. 环境科学研究,2007,20(1):104-107. LIU B,YAN D D,BI X M. Isolation, application and molecular identification of deodorizing bacteria for methyl mercaptan[J]. Research of Environmental Sciences,2007,20(1):104-107(in Chinese).
[47] 刘波,姜安玺,程养学,等. 两级滴滤去除硫化氢和甲硫醇混合恶臭气体[J]. 中国环境科学,2003,23(6):618-621. LIU B,JIANG A X,CHEN Y X,et al. Removal of mixed H2S-MT stench by trickled-bed biofilters connected in series[J]. China Environmental Science,2003,23(6):618-621(in Chinese).
[48] CAMMARANO C,HUGUET E,CADOURS R,et al. Selective transformation of methyl and ethyl mercaptans mixture to hydrocarbons and H2S on solid acid catalysts[J]. Applied Catalysis B Environmental,2014,s 156-157(3):128-133. [49] HE D D,CHEN D K,HAO H S,et al. Enhanced activity and stability of Sm-doped HZSM-5 zeolite catalysts for catalytic methyl mercaptan (CH3SH) decomposition[J]. Chemical Engineering Journal,2017,317:60-69. [50] BALTRUSAITIS J,BUČKO T,MICHAELS W,et al. Catalytic methyl mercaptan coupling to ethylene in chabazite:DFT study of the first C-C bond formation[J]. Applied Catalysis B Environmental,2016,187:195-203. [51] HE D D,HAO H S,CHEN D K,et al. Rapid synthesis of nano-scale CeO2 by microwave-assisted sol-gel method and its application for CH3SH catalytic decomposition[J]. Journal of Environmental Chemical Engineering,2016,4(1):311-318. [52] 陈华. 非均相光催化氧化法降解有机污染物的研究现状与发展趋势[J]. 化学工业与工程技术,2006,27(5):45-48. CHEN H. Research status and development trend of heterogeneous photocatalytic oxidation degradation of organic pollutants[J]. Journal of Chemical Industry & Engineering,2006,27(5):45-48(in Chinese).
[53] 洪伟,古国榜,吴志伟,等. 光催化氧化法治理恶臭污染的工程应用[J]. 环境工程,2002,20(6):40-42. HONG W,GU G B,WU Z W,et al. Engineering application of photocatalytic oxidation for odor pollution control[J]. Environmental Engineering,2002,20(6):40-42(in Chinese).
[54] LIU T,LI X,LI F. Development of a photocatalytic wet scrubbing process for gaseous odor treatment[J]. Industrial & Engineering Chemistry Research,2010,49(8):3617-3622. [55] 罗水源,何杰,赵俊斌. 层状铌酸盐MxNb6O17(M=K,Fe,Ni)的合成及对甲硫醇的吸附与光催化性能研究[J]. 广东化工,2009,36(6):14-16. LUO S Y,HE J,ZHAO J B. Study on synthesis of lamellar niobates MxNb6O17(M=K,Fe,Ni) and their photocatalytic activity for methyl mercaptan in methane[J]. Guangdong Chemical Industry,2009,36(6):14-16(in Chinese).
[56] CAI W,LU G,HE J,et al. The adsorption feature and photocatalytic oxidation activity of K1-2xMxTiNbO5, (M=Mn,Ni) for methyl mercaptan in methane[J]. Ceramics International,2012,38(4):3167-3174. [57] 林琳. 生物法去除含甲硫醇恶臭气体的机理[J]. 环境保护与循环经济,2000,20(4):7-8. LIN L. Mechanism of biological removal of odorous gases containing methyl mercaptan[J]. Environmental Protection & Re-Cycling Economy,2000,20(4):7-8(in Chinese).
[58] 张贵剑,李凯,林强,等. 低温等离子体技术脱除大气污染物的研究进展[J]. 材料导报,2015,29(1):137-142. ZHANG G J,LI K,LIN Q,et al. Research process of removing atmospheric pollutants by non-thermal plasma technology[J]. Materials Review,2015,29(1):137-142(in Chinese).
[59] 佚名. 低温等离子体技术成功治理异味气体[J]. 河南化工,2009,26(3):52. Successful treatment of odorous gases by low temperature plasma technology[J]. Henan Chemical Industry,2009 ,26(3):52(in Chinese).
[60] TSAI C H,LEE W J,CHEN C Y,et al. Decomposition of CH3SH in a RF plasma reactor:Reaction products and mechanisms[J]. Industrial & Engineering Chemistry Research,2001,40(11):2384-2395. -

计量
- 文章访问数: 3334
- HTML全文浏览数: 3245
- PDF下载数: 368
- 施引文献: 0