寿光设施菜地土壤N2O排放规律及其影响因素

陶宝先, 刘晨阳. 寿光设施菜地土壤N2O排放规律及其影响因素[J]. 环境化学, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802
引用本文: 陶宝先, 刘晨阳. 寿光设施菜地土壤N2O排放规律及其影响因素[J]. 环境化学, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802
TAO Baoxian, LIU Chenyang. N2O emission from the greenhouse soils in Shouguang City, northern China[J]. Environmental Chemistry, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802
Citation: TAO Baoxian, LIU Chenyang. N2O emission from the greenhouse soils in Shouguang City, northern China[J]. Environmental Chemistry, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802

寿光设施菜地土壤N2O排放规律及其影响因素

  • 基金项目:

    国家自然科学基金(41501099),山东省自然科学基金(ZR2014DQ015,ZR2013DL003)和聊城大学基金(318051430)资助.

N2O emission from the greenhouse soils in Shouguang City, northern China

  • Fund Project: Supported by the National Natural Science Foundation of China (41501099),the Natural Science Foundation of Shandong Province (ZR2014DQ015,ZR2013DL003) and the Liaocheng University Foundation (318051430).
  • 摘要: 设施栽培是我国蔬菜生产的重要方式之一.设施菜地土壤高温、高湿、持续且大量施肥等特点,可能改变土壤氮素周转及N2O排放.寿光是我国重要的蔬菜生产基地之一.然而,鲜有研究关注寿光市设施菜地土壤N2O排放规律及其影响因素.本文以寿光市农田、种植6、12年设施菜地及荒废设施菜地为例,研究农田转变为设施菜地后土壤N2O排放规律,并探讨其影响机理.结果表明,设施菜地土壤N2O年排放量明显高于农田及荒废设施菜地,且种植6年设施菜地土壤N2O年排放量显著大于种植12年设施菜地(P2O排放通量呈显著正相关关系(P2O排放.(3)设施菜地具有较高的土壤脲酶活性,且与土壤硝态氮含量、含水率呈显著正相关关系(P2O排放.
  • 加载中
  • [1] IPCC. The Physical Science Basis-Working Group Ⅰ Contribution to IPCC Fourth Assessment Report[R]. Cambridge University Press,London,2007.
    [2] BOUWMAN A,BOUMANS L,BATJES N. Modeling global annual N2O and NO emissions from fertilized fields[J]. Global Biogeochemical Cycles,2002,16(4):281-289.
    [3] FAO. World agriculture:Towards 2015/2030. An FAO perspective[R]. FAO,Rome,2003.
    [4] ZHANG J,MULLER C,CAI Z. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils[J]. Soil Biology & Biochemistry,2015,84:199-209.
    [5] FIRESTONE M K,DAVIDSON E A. Microbiological basis of NO and N2O production and consumption in soil//Andreae MO,Schimel DS (eds). Exchange of trace gases between terrestrial ecosystems and the atmosphere[C]. New York:Wiley,1989.
    [6] ZHANG Y,ZHAO W,ZHANG J B. et al. N2O production pathways relate to land use type in acidic soils in subtropical China[J]. Journal of Soils and Sediments,2016,17(2):206-314.
    [7] WRAGE N,LAUF J,PRADO A D. et al. Distinguishing sources of N2O in European grasslands by stable isotope analysis[J]. Rapid Communication in Mass Spectrometry,2004,18:1201-1207.
    [8] ZHANG J,CAI Z,ZHU T. N2O production pathways in the subtropical acid forest soils in China[J]. Environmental Research,2011,111:643-649.
    [9] RUTTING T,CLOUGH T J,MULLER C. et al. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture[J]. Global Change Biology,2010,16:2530-2542.
    [10] STANGE C F,SPOTT O,MULLER C. An inverse abundance approach to separate soil nitrogen pools and gaseous nitrogen fluxes into fractions related to ammonium,nitrate and soil organic nitrogen[J]. European Journal of Soil Science,2009,60:907-915.
    [11] MULLER C,STEVENES R J,LAUGHLIN R J. A 15N tracing model analyses N transformations in old grassland soil[J]. Soil Biology & Biochemistry,2004,36:619-632.
    [12] CHEN D L,SUTER H C,ISLAM A. et al. Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea[J]. Soil Biology & Biochemistry,2010,42:660-664.
    [13] RAFIQUE R,HENNESSSY D,KIELY G. Nitrous oxide emission from grazed grassland under different management systems[J]. Ecosystems,2011,14:563-582.
    [14] SENBAYRAM M,CHEN R,BUDAI A. et al. N2O emission and the N2O/(N2O+ N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture,Ecosystems and Environment,2012,147:4-12.
    [15] ROTH E,GUNKEL-GRILLON P,JOLY L. et al. Impact of raw pig slurry and pig farming practices on physicochemical parameters and on atmospheric N2O and CH4 emissions of tropical soils,Uvéa Island (South Pacific)[J]. Environmental Science and Pollution Research,2014,21:10022-10035.
    [16] ABDALLA M,JONES M,SMITH P. et al. Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils[J]. Soil Use and Management,2009,25:376-388.
    [17] DOBBBIE K E,SMITH K A. The effects of temperature,water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol[J]. European Journal of Soil Science,2001,52:667-673.
    [18] DAVIDSON E A,VERCHOT L V. Testing the hole in pipe model of nitric oxide emissions from soils using the TRAGNET database[J]. Global Biogeochemical Cycles,2000,14:1035-1043.
    [19] NADEEM S,BORRESEN T,DORSCH P. Effect of fertilization rate and ploughing time on nitrous oxide emissions in a long-term cereal trail in south east Norway[J]. Biology and Fertility of Soils,2015,51:353-365.
    [20] 高新昊,张英鹏,刘兆辉,等.种植年限对寿光设施大棚土壤生态环境的影响[J]. 生态学报,2015,35(5):1452-1459.

    GAO X H,ZHANG Y P,LIU Z H,et al. Effects of cultivating years on soil ecological environment in greenhouse of Shouguang City,Shandong[J]. Acta Ecologica Sinica,2015,35(5):1452-1459(in Chinese).

    [21] 曾希柏,白玲玉,李莲芳,等.山东寿光不同利用方式下农田土壤有机质和氮磷钾状况及其变化[J]. 生态学报,2009,29(7):3737-3746.

    ZENG X B,BAI L Y,LI L F,et al. The status and changes of organic matter,nitrogen,phosphorus and potassium under different soil using styles of Shouguang of Shandong Province[J].Acta Ecologica Sinica,2009,29(7):3737-3746(in Chinese).

    [22] 山东省土壤肥料工作站. 山东土壤[M]. 北京:农业出版社, 1994:166-411. Shandong Workstation of Soil and Fertilizer (SWSF). Shandong soils[M]. Beijing:Agricultural Press,1994:166

    -411(in Chinese).

    [23] SONG C C,XU X F,TIAN H Q. et al. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain,Northeast China[J]. Global Change Biology,2009,15:692-705.
    [24] 关松荫. 土壤酶学研究法[M]. 北京:农业出版社,1986:295-297. GUAN S Y. Enzymes and its methodology[M]. Beijing:Agricultrual Press,1986:295

    -297(in Chinese).

    [25] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:12-288. LU R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press,2000:12

    -288(in Chinese).

    [26] REY A,PETSIKOS C,JARVIS P G. et al. Effect of temperature and moisture on rates of carbon mineralization in a mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science,2005,56:589-599.
    [27] SINGURINDY O,MOLODOVSKAYA M,RICHARDS B K. et al. Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.)[J]. Agriculture,Ecosystems and Environment,2009,132:74-81.
    [28] 吴娟,王振领,马东.石灰氮对设施菜地土壤N2O排放的影响[J]. 环境化学,2017,36(6):1335-1342.

    WU J,WANG Z L,MA D. Effect of lime-nitrogen on N2O emission from greenhouse soil[J].Environmental Chemistry,2017,36(6):1335-1342(in Chinese).

    [29] HAN J P,SHI J C,ZENG L Z. et al. Impacts of continuous excessive fertilization on soil potential nitrification activity and nitrifying microbial community dynamics in greenhouse system[J]. Journal of Soils and Sediments,2017,17:471-480.
    [30] 曾路生,崔德杰,李俊良,等.寿光大棚菜地土壤呼吸强度、酶活性、pH与EC的变化研究[J]. 植物营养与肥料学报,2009,15(4):865-870.

    ZENG L S,CUI D J,LI J L,et al. Changes of respiration,enzyme activities,pH and EC in greenhouse vegetable soils in Shouguang[J]. Plant Nutrition and Fertilizer Science,2009,15(4):865-870(in Chinese).

    [31] HU Y G,CHANG X F,LIN X W. et al. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan plateau[J]. Soil Biology & Biochemistry,2010,42:944-952.
    [32] CANTAREL A A M,BLOOR J M G,DELTROY N. et al. Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland[J]. Ecosystems,2011,14:223-233.
    [33] WEBSTER E A,HOPKINS D W. Contributions from different microbial processes to N2O emission from soil under different moisture regimes[J]. Biology and Fertility of Soils,1996,22:331-335.
    [34] LIU C Y,ZHANG X H,ZHOU Z X. et al. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China[J]. Plant and Soil,2010,332:123-134.
    [35] 张仲新,李玉娥,华珞,等. 不同施肥量对设施菜地N2O排放能量的影响[J]. 农业工程学报,2010, 26(5):269-275.

    ZHANG Z X,LI Y E,HUA L,et al. Effects of different fertilizer levels on N2O flux from protected vegetable land[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(5):269-275(in Chinese).

    [36] ADAV S S,LEE D J,LAI J Y. Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source[J]. Applied Microbiology and Biotechnology,2010,85:773-778.
    [37] KUMAR A,SRIVASTAVA A K,VELMOUROUGANE K. et al. Urea activity and its kinetics in selected benchmark soils of Indo-Gangetic Plains,India[J]. Proceedings of the National Academy of Sciences,India,2015,85(2):407-413.
    [38] SANZ-COBENA A,ABALOS D,MEIJIDE A. et al. Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission[J]. Mitigation and Adaptation Strategies for Global Change,2016,21:1131-1144.
    [39] 杨岩,孙钦平,李吉进,等. 不同水肥处理对设施菜地N2O排放的影响[J].植物营养与肥料学报,2013,19(2):430-436.

    YANG Y,SUN Q P,LI J J,et al. Effects of different fertilizer and irrigation levels on N2O emission from greenhouse vegetable lands[J]. Plant Nutrition and Fertilizer Science,2013,19(2):430-436(in Chinese).

  • 加载中
计量
  • 文章访问数:  1108
  • HTML全文浏览数:  1053
  • PDF下载数:  229
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-28
  • 刊出日期:  2018-01-15
陶宝先, 刘晨阳. 寿光设施菜地土壤N2O排放规律及其影响因素[J]. 环境化学, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802
引用本文: 陶宝先, 刘晨阳. 寿光设施菜地土壤N2O排放规律及其影响因素[J]. 环境化学, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802
TAO Baoxian, LIU Chenyang. N2O emission from the greenhouse soils in Shouguang City, northern China[J]. Environmental Chemistry, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802
Citation: TAO Baoxian, LIU Chenyang. N2O emission from the greenhouse soils in Shouguang City, northern China[J]. Environmental Chemistry, 2018, 37(1): 154-163. doi: 10.7524/j.issn.0254-6108.2017042802

寿光设施菜地土壤N2O排放规律及其影响因素

  • 1. 聊城大学环境与规划学院, 聊城, 252059
基金项目:

国家自然科学基金(41501099),山东省自然科学基金(ZR2014DQ015,ZR2013DL003)和聊城大学基金(318051430)资助.

摘要: 设施栽培是我国蔬菜生产的重要方式之一.设施菜地土壤高温、高湿、持续且大量施肥等特点,可能改变土壤氮素周转及N2O排放.寿光是我国重要的蔬菜生产基地之一.然而,鲜有研究关注寿光市设施菜地土壤N2O排放规律及其影响因素.本文以寿光市农田、种植6、12年设施菜地及荒废设施菜地为例,研究农田转变为设施菜地后土壤N2O排放规律,并探讨其影响机理.结果表明,设施菜地土壤N2O年排放量明显高于农田及荒废设施菜地,且种植6年设施菜地土壤N2O年排放量显著大于种植12年设施菜地(P2O排放通量呈显著正相关关系(P2O排放.(3)设施菜地具有较高的土壤脲酶活性,且与土壤硝态氮含量、含水率呈显著正相关关系(P2O排放.

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回