黄河流域马莲河枯水期水化学特征及形成机制

王雨山, 程旭学, 张梦南, 祁晓凡. 黄河流域马莲河枯水期水化学特征及形成机制[J]. 环境化学, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602
引用本文: 王雨山, 程旭学, 张梦南, 祁晓凡. 黄河流域马莲河枯水期水化学特征及形成机制[J]. 环境化学, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602
WANG Yushan, CHENG Xuxue, ZHANG Mengnan, QI Xiaofan. Hydrochemical characteristics and formation mechanisms of Malian River in Yellow River basin during dry season[J]. Environmental Chemistry, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602
Citation: WANG Yushan, CHENG Xuxue, ZHANG Mengnan, QI Xiaofan. Hydrochemical characteristics and formation mechanisms of Malian River in Yellow River basin during dry season[J]. Environmental Chemistry, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602

黄河流域马莲河枯水期水化学特征及形成机制

  • 基金项目:

    国家自然科学基金(41502259)和中国地质调查局项目(DD20160288)资助.

Hydrochemical characteristics and formation mechanisms of Malian River in Yellow River basin during dry season

  • Fund Project: Supported by the National Natural Science Foundation of China (41502259) and the China Geology Survey (DD20160288).
  • 摘要: 为查明马莲河流域水环境现状,于2016年4月采集河水、支流水和地下水样品37组,运用Piper三线图和同位素分析来探究水体主要阴阳离子、氢氧稳定同位素特征及其空间变化,结合Gibbs图、端元图解和相关性分析等方法揭示河水化学组分的形成作用.结果表明:枯水期马莲河水呈弱碱性,总溶解固体TDS均值2685.1 mg·L-1,离子组成以Na+、Mg2+、Cl-、SO42-为主,水化学特征和中国主要河流有较大差异.沿着流向TDS和Cl-、Na+质量浓度呈降低趋势、水化学类型具分带规律.不同水体δD、δ18O分布特征不一,地下水沿着当地降雨线分布,河水和支流水沿着蒸发线分布.硫酸盐和岩盐是水体离子的主要来源,河水化学组成由蒸发盐风化、蒸发浓缩和地下水补给3种作用控制.其中,蒸发盐风化是首要因素,决定了河水化学组分的宏观特征,蒸发作用和地下水补给影响了河水化学组成的空间变异.
  • 加载中
  • [1] 周嘉欣,丁永建,曾国雄,等.疏勒河上游地表水水化学主离子特征及其控制因素[J].环境科学,2014, 35(9):3315-3324.

    ZHOU J X, DING Y J, ZENG G X, et al. Major ion chemistry of surface water in the upper reach of Shule river basin and the possible controls[J]. Environmental Science, 2014, 35(9):3315-3324(in Chinese).

    [2] CHAPMAN H, BICKLE M, THAW S H, et al. Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar[J]. Chemical Geology, 2015, 401(1):15-27.
    [3] ZHANG L, SONG X F, XIA J, et al. Major element chemistry of the Huai River basin, China[J]. Applied Geochemistry, 2011, 26(3):293-300.
    [4] 吴起鑫,韩贵琳,李富山,等.珠江源区南、北盘江丰水期水化学组成特征及来源分析[J].环境化学,2015, 34(7):1289-1296.

    WU Q X, HAN G L, LI F S, et al. Characteristic and source analysis of major ions in Nanpanjiang and Beipanjiang at the upper Pearl River during the wet season[J]. Environmental Chemistry, 2015, 34(7):1289-1296(in Chinese).

    [5] 李宗杰,宋玲玲,田青.青海布哈河丰水期水化学特征[J].生态学杂志,2017, 36(3):766-773.

    LI Z J, SONG L L, TIAN Q. Water chemical characteristics in the wet season in Buha River Basin in Qinghai[J]. Chinese Journal of Ecology, 2017, 36(3):766-773(in Chinese).

    [6] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
    [7] GIBBS R J. Water chemistry of the Amazon River[J]. Geochimica et Cosmochimica Acta, 1972, 36(9):1061-1066.
    [8] MILLOT R, GAILLARDET J É, DUPRÉ B, et al. Northern latitude chemical weathering rates:clues from the Mackenzie River Basin, Canada[J]. Geochimica et Cosmochimica Acta, 2003, 67(7):1305-1329.
    [9] GALY A, FRANCE-LANORD C. Weathering processes in the Gangers-Brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology, 1999, 159(1):31-60.
    [10] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1):3-30.
    [11] HU M, STALLARD R F, EDMOND J M. Major ion chemistry of some large Chinese rivers[J]. Nature, 1982, 298(5874):550-553.
    [12] 陈静生,王飞越,何大伟.黄河水质地球化学[J].地学前缘,2006, 13(1):58-73.

    CHEN J S, WANG F Y, HE D W. Geochemistry of water quality of the Yellow River basin[J]. Earth Science Frontiers, 2006, 13(1):58-73(in Chinese).

    [13] 陈静生,王飞越,夏星辉.长江水质地球化学[J].地学前缘,2006, 13(1):74-85.

    CHEN J S, WANGF Y, XIA X H. Geochemistry of water quality of the Yangtze River basin[J]. Earth Science Frontiers, 2006, 13(1):74-85(in Chinese).

    [14]
    [15] 文泽伟,汝旋,谢彬彬,等.龙江-柳江-西江流域的水化学特征及其成因分析[J].环境化学,2016, 35(9):1853-1864.

    WEN Z W, RU X, XIE B B, et al. Characteristics and sources analysis of hydrochemistry in the Longjiang-Liujiang -Xijiang watershed[J]. Environmental Chemistry, 2016, 35(9):1853-1864(in Chinese).

    [16] 黄奇波,覃小群,刘朋雨,等.乌江中上游段河水主要离子化学特征及控制因素[J].环境科学,2016, 37(5):1779-1787.

    HUANG J B, QIN X Q, LIU P Y, et al. Major Ionic features and their controlling factors in the Upper-Middle reaches of Wujiang river[J]. Environmental Science, 2016, 37(5):1779-1787(in Chinese).

    [17] 肖捷颖,赵品,李卫红.塔里木河流域地表水水化学空间特征及控制因素研究[J].干旱区地理,2016, 39(1):33-40.

    XIAO J Y, ZHAO P, LI W H. Spatial characteristic and controlling factor of surface water hydrochemistry in the Tarim River Basin[J]. Arid Land Geography, 2016, 39(1):33-40(in Chinese).

    [18] 唐玺雯,吴锦奎,薛丽洋,等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014, 35(1):131-142.

    TANG X W, WU J K, XUE L Y, et al. Major ion chemistry of surface water in the Xilin river basin and the possible controls[J]. Environmental Science, 2014, 35(1):131-142(in Chinese).

    [19] 解晨骥,高全洲,陶贞.流域化学风化与河流水化学研究综述与展望[J].热带地理,2012, 32(4):331-337.

    XIE C J, GAO Q Z, TAO Z. Review and perspectives of the study on chemical weathering and hydro-chemistry in river basin[J]. Tropical Geography, 2012, 32(4):331-337(in Chinese).

    [20] 红梅,张全发,王伟波.汉江上游金水河流域水电工程对流域水环境的影响[J].水资源与水工程学报,2014,25(2):35-41.

    BU H M, ZHANG Q F, WANG W B. Impact of hydropower project on water environment of Jinshui River basin in upper reaches of Hanjiang river[J]. Journal of Water Resources & Water Engineering, 2014, 25(2):35-41(in Chinese).

    [21]
    [22] 黄锦忠,谭红兵,王若安,等.我国西北地区多年降水的氢氧同位素分布特征研究[J].水文,2015, 35(1):33-39.

    HUANG J Z, TAN H B, WANG R A, et al. Hydrogen and oxygen isotopic analysis of perennial meteoric water in northwest China[J]. Journal of China Hydrology, 2015, 35(1):33-39(in Chinese).

    [23] 吴卫华,郑洪波,杨杰东,等.中国河流流域化学风化和全球碳循环[J].第四纪研究,2011, 31(3):397-407.

    WU W H, ZHENG H B, YANG J D, et al. Chemical weathering of large river catchments in china and the global carbon cycle[J]. Quaternary Sciences, 2011, 31(3):397-407(in Chinese).

    [24]
    [25] ZHANG Q, JIN Z, ZHANG F, et al. Seasonal variation in river water chemistry of the middle reaches of the Yellow River and its controlling factors[J]. Journal of Geochemical Exploration, 2015, 156(3):101-113.
    [26] 谢渊,王剑,李明辉,等.鄂尔多斯盆地早白垩世岩相古地理与地下水水质和分布的关系[J].地质通报,2004, 23(11):1094-1102.

    XIE Y, WANG J, LI M H, et al. Relations of the early Cretaceous lithofacies-paleogeography to groundwater quality and distribution in the Ordos basin[J]. Geological Bulletin of China, 2004, 23(11):1094-1102(in Chinese).

    [27] 章光新,邓伟,何岩.松嫩平原西部水体环境演化机制的同位素证据[J].水文地质工程地质,2005, 32(3):44-58.

    ZHANG G X, DENG W, HE Y. Isotopic evidence of the mechanism of water salinization in the western part of Songnen plain of Northeast China[J]. Hydrogeology & Engineering Geology, 2005, 32(3):55-58(in Chinese).

    [28] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468.
    [29] HUANG T, PANG Z. The role of deuterium excess in determining the water salinisation mechanism:A case study of the arid Tarim River Basin,NW China[J]. Applied Geochemistry, 2012, 27(12):2382-2388.
    [30] 王雨山,郭媛.干旱区地下水咸化机制的区域氘盈余解析[J].水文地质工程地质,2015, 42(6):29-35.

    WANG Y S, GUO Y. A study of groundwater salinization mechanism in arid areas using regional deuterium excess[J]. Hydrogeology and Engineering Geology, 2015, 42(6):29-35(in Chinese).

    [31] 郭巧玲,熊新芝,姜景瑞.窟野河流域地表水-地下水的水化学特征[J].环境化学,2016, 35(7):1372-1380.

    GUO Q L, XIONG X Z, JIANG J R. Hydrochemical characteristics of surface and ground water in the Kuye River Basin[J]. Environmental Chemistry, 2016, 35(7):1372-1380(in Chinese).

    [32] 袁瑞强,龙西亭,王鹏,等.氯离子质量平衡法应用问题刍议[J].水文,2015, 35(4):7-13.

    YUAN R Q, LONG X T, WANG P, et al. Discussion on application of chloride mass balance method[J]. Journal of China Hydrology, 2015, 35(4):7-13(in Chinese).

  • 加载中
计量
  • 文章访问数:  1168
  • HTML全文浏览数:  1096
  • PDF下载数:  267
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-26
  • 刊出日期:  2018-01-15
王雨山, 程旭学, 张梦南, 祁晓凡. 黄河流域马莲河枯水期水化学特征及形成机制[J]. 环境化学, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602
引用本文: 王雨山, 程旭学, 张梦南, 祁晓凡. 黄河流域马莲河枯水期水化学特征及形成机制[J]. 环境化学, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602
WANG Yushan, CHENG Xuxue, ZHANG Mengnan, QI Xiaofan. Hydrochemical characteristics and formation mechanisms of Malian River in Yellow River basin during dry season[J]. Environmental Chemistry, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602
Citation: WANG Yushan, CHENG Xuxue, ZHANG Mengnan, QI Xiaofan. Hydrochemical characteristics and formation mechanisms of Malian River in Yellow River basin during dry season[J]. Environmental Chemistry, 2018, 37(1): 164-172. doi: 10.7524/j.issn.0254-6108.2017052602

黄河流域马莲河枯水期水化学特征及形成机制

  • 1.  中国地质调查局水文地质环境地质调查中心, 保定, 071051;
  • 2.  中国地质大学(北京)水资源与环境学院, 北京, 100083
基金项目:

国家自然科学基金(41502259)和中国地质调查局项目(DD20160288)资助.

摘要: 为查明马莲河流域水环境现状,于2016年4月采集河水、支流水和地下水样品37组,运用Piper三线图和同位素分析来探究水体主要阴阳离子、氢氧稳定同位素特征及其空间变化,结合Gibbs图、端元图解和相关性分析等方法揭示河水化学组分的形成作用.结果表明:枯水期马莲河水呈弱碱性,总溶解固体TDS均值2685.1 mg·L-1,离子组成以Na+、Mg2+、Cl-、SO42-为主,水化学特征和中国主要河流有较大差异.沿着流向TDS和Cl-、Na+质量浓度呈降低趋势、水化学类型具分带规律.不同水体δD、δ18O分布特征不一,地下水沿着当地降雨线分布,河水和支流水沿着蒸发线分布.硫酸盐和岩盐是水体离子的主要来源,河水化学组成由蒸发盐风化、蒸发浓缩和地下水补给3种作用控制.其中,蒸发盐风化是首要因素,决定了河水化学组分的宏观特征,蒸发作用和地下水补给影响了河水化学组成的空间变异.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回