不同南方籼稻品种对土壤锑的富集及其健康风险评估
Accumulation characteristics of soil antimony (Sb) by different Indica rice varieties and its health risk assessment in the southern areas of China
-
摘要: 为探讨不同水稻品种对土壤锑(Sb)的富集能力,本文采用福建部分区域13个籼稻品种的稻米和对应的表层土壤样品(138对),研究了不同品种水稻对土壤Sb的富集能力和累积特征,并评估了稻米Sb对人类健康的潜在风险.结果表明,调查区域土壤Sb全量介于0.12—1.02 mg·kg-1,其中39.5%的土壤Sb全量高于福建土壤Sb的背景值;水稻不同部位Sb含量依次为:根 >> 叶 > 茎 > 糙米;不同水稻品种糙米中Sb含量介于2.2 μg·kg-1(宜优673)和14.6 μg·kg-1(Ⅱ优673)之间;水稻对土壤有效Sb的平均富集系数表现出明显的品种差异,常规稻(东联5号)和两系杂交稻(培杂泰丰、扬两优6号)的富集系数均处于中-低水平.风险评估结果表明,在未遭受Sb污染的农田上生产的籼稻稻米中的Sb不至于对人体健康构成危害.Abstract: In order to study the accumulation ability of soil Sb by different indica rice varieties, a total of 138rice grain samples of 13 indica rice varieties and the corresponding surface soil samples were collected from areas in Fujian Province. The accumulation factors and the potential risks of Sb in brown rice were assessed. The results showed that the total amount of Sb in soils ranged from 0.12-1.02 mg·kg-1, of which 39.5% was higher than the background value of Sb in Fujian soils. The Sb contents in different parts of rice decreased in the order of root>>leaf>stem>grain. The Sb concentration in brown rice varied between 2.2 μg·kg-1 (Yi-you 673) and 14.6 μg·kg-1(Ⅱ-You 673). The bioaccumulation factors (BAF) of brown rice based on the available soil Sb differed with rice varieties, of which the BAF of the conventional rice (Dong-lian 5) and the two-line hybrid rice (Pei-za-tai-feng and Yang-liang-you 6) were at the low and middle level. The risk assessment showed that the rice produced from the selected areas may not possess health risks to residents.
-
Key words:
- antimony(Sb) /
- soil /
- rice /
- accumulation /
- health risk
-
-
[1] KABATAPENDIAS A, PENDIAS H K.Trace elements in soils and plants[M].4th Edition.CRC Press,1984:951-974. [2] 国家环保总局,中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版,1990:466-467. State Environmental Protection Administration,China National Environmental Monitoring Center. Background value of soil element in China[M].Beijing:China Environmental Science Press,1990:466 -467(in Chinese).
[3] TELFORD K,MAHER W,KRIKOWA F,et al.Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia[J].Environmental Chemistry, 2009, 6(2):95-99. [4] FILELLA M,BELZILE N,CHEN Y W.Antimony in the environment:A review focused onnatural waters:I.Occurrence[J]. Earth Science Reviews,2002,57(1-2):125-176. [5] QI C,LIU G,CHOU C L,et al.Environmental geochemistry of antimony in Chinesecoals[J].Science of the Total Environment, 2008, 389(2-3):225-234. [6] PIERATT A,SHAHID M,SEJALON D N,et al. Antimony bioavailability:Knowledge and research perspectives for sustainable agricultures[J]. Journal of Hazardous Materials,2015,289:219-234. [7] 罗英杰,王小烈,柳群义,等.中国锑资源产业发展形势及对策建议[J].资源与产业,2016,18(1):75-81. LUO Y J,WANG X L,LIU Q Y,etal.Developmentactuality and suggestion of China's antimony industry[J].Resources and Industries,2016,18(1):75-81(in Chinese).
[8] [9] 项萌,张国平,李玲,等.广西铅锑矿冶炼区土壤剖面及孔隙水中重金属污染分布规律[J].环境科学,2012,33(1):266-272. XIANG M,ZHANG G P,LI L et al.Characteristics of heavy metals in soil profile and pore water around Hechiantimony-lead smelter,Guangxi,China[J].Environmental Science,2012,33(1):266-272(in Chinese).
[10] 郎春燕,王登菊,黄军.成都燃煤电厂周围土壤中砷、锑、铅、锌分布特征及污染评价[J].环境化学,2011, 30(8):1439-1444. LANG C Y,WANG D J,HUANG J.Distributioncharacteristics and pollution evaluation of As,Sb,Pb and Zn in soil around the coal-fired power plant in Chengdu[J].Environmental Chemistry,2011, 30(8):1439-1444(in Chinese).
[11] WHO. Guidelines for drinking-water quality,Volume 2:Health criteria and other supporting information[M].2th Edition. Geneva:World Health Organization,1996. [12] AINSWORTH N,COOKE J A, JOHNSON M S.Distribution of antimony in contaminated grassland:1-vegetation and soils[J]. Environmental Pollution, 1990, 65(1):65-77. [13] HAMMEL W,DEBUS R, STEUBING L. Mobility of antimony in soil and its availabilityto plants[J].Chemosphere, 2000,41(11):1791-1798. [14] OKKENHAUG G,ZHU Y G,LUO L,et al.Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from anactive Sb mining area[J].Environmental Pollution,2011,159(10), 2427-2434. [15] 袁程,张红振,池婷,等.中南某锑矿及其周边农田土壤与植物重金属污染研究[J].土壤,2015, 47(5):960-964. YUAN C,ZHANG H Z,CHI T,et al.Heavymetal and metalloid pollution of soils and plants in typical antimony mining area of central-south China[J].Soils,2015, 47(5):960-964(in Chinese).
[16] 陈秋平,胥思勤,陈洁薇,等.锑矿区土壤重金属污染及植物累积特征[J].环境科技,2014,27(2):1-4. CHEN Q P, XU S Q, CHEN J W,et al.The Pollution of heavymetals in soils and characteristics ofplantsaccumulation in antimony mining Area[J].Environmental Science and Technology,2014,27(2):1-4(in Chinese).
[17] REN J H,MA LQ,SUN H J,et al. Antimony uptake, translocation andspeciation in rice plants exposed to antimonite and antimonate[J].Science of the Total Environment, 2014, 475:83-89. [18] WU F, FU Z, LIU B, et al. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area[J].Science of the Total Environment, 2011, 409(18):3344-3351. [19] CAI F,REN J,TAO S,et al.Uptake,translocation and transformation of antimony in rice (Oryza sativa L.) seedlings[J]. Environmental Pollution, 2015,209:169-176. [20] NING Z,XIAO T,XIAO E.Antimony in the soil-plant system in an sb mining/smelting area of southwest China[J].International Journal of Phytoremediation,2015,17(11):1081-1089. [21] 冯信平,田家金.ICP-MS法测定土壤中有效钼不确定度的研究[J].安徽农业科学,2010,38(36):20698-20700. FENG X P,TIAN J J.Uncertainty evaluation available Mo in soil by ICP-MS[J].Journal of Anhui AgriculturalScience,2010,38(36):20698-20700(in Chinese).
[22] CORRALES I,BAECELO J, BECH J,et al.Antimony accumulation and toxicity tolerance mechanisms in Trifolium species[J].Journal of Geochemical Exploration,2014,147:167-172. [23] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:146-195. LU R K.Soil agricultural chemical analysis method[M].Beijing:China Agricultural university Press,2000:146 -195(in Chinese).
[24] QIAN Y,GALLAGHER FJ,FENG H,et al.Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site[J].Science of the Total Environment, 2014, 476-477:696-704. [25] 齐文启,曹文山.锑(Sb)的土壤环境背景值研究[J].土壤通报,1991,22(5):209-210. QI W Q,CAO W S.Study of soil environmental background value of antimony (Sb)[J].Chinese Journal of Soil Science,1991,22(5):209-210(in Chinese).
[26] HE M C. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China[J]. Environmental Geochemistry and Health,2007,29(3):209-219. [27] HE M C,WANG X Q,WU F C,etal.Antimony pollution in China[J].Science of the Total Environment,2012, 421-422(3):41-50. [28] THANABALASINGAM P, PICKERING W F. Specific sorption of antimony (Ⅲ) by the hydrous oxides of Mn, Fe and Al[J]. Water, Air and Soil Pollution,1990,49,175-185. [29] XI J H, HE MC,LIN C Y.Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid[J].Environmental Earth Sciences, 2010, 60(4):715-722. [30] 何孟常,云影.锑矿区土壤中锑的形态及生物有效性[J].环境化学,2003,22(2):126-130. HE M C,YUN Y.The speciation and bioavailability of antimony in the soils near antimony mine area[J].Environmental Chemistry,2003,22(2):126-130(in Chinese).
[31] WILSON S C,LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J].Environmental Pollution, 2010,158(5):1169-1181. [32] ETTLER V, MIHALJEVIC M, SEBEK O, et al. Antimony availability inhighly polluted soils and sediments - A comparison of single extractions[J]. Chemosphere, 2007, 68(3):455-463. [33] TIGHE M, ASHLEY P, LOCKWOOD P, et al. Soil, water, and pasture enrichment of antimony and arsenic within a coastal flood plain system[J]. Science of the Total Environment, 2005, 347(1-3):175-186. [34] CHEN B,KRACHLER M,SHOTYK W.Determination of antimony in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HGAFS)[J].Journalof AnalyticalAtomicSpectrometry,2003,18:1256-1262. [35] 李玲,张国平,刘虹,等.广西大厂矿区土壤-植物系统中Sb、As的迁移转化特征[J].环境科学学报,2010,30(11):2305-2313. LI L,ZHANG G P,LIU H,et al.Distribution and mobility of Sb and As in topsoils and plants in the Dachangmulti-metalliferous mine area,Guangxi,China[J].Acta Scientiae Circumstantiae,2010,30(11):2305-2313(in Chinese).
[36] HUANG Y, CHEN Z, LIU W. Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(Ⅲ) or Sb(V)[J]. Plant & Soil, 2012, 352(1-2):41-49. [37] 何孟常,谢南去,余维德,等.土壤锑对水稻生长的影响及残留积累规律研究[J].农业环境保护,1994,13(1):18-22. HE M C,XIE N Q,YU W D,et al.The influence of soil antimony on the growth of rice and the study of residual accumulation[J].Agricultural Environmental Protection,1994,13(1):18-22(in Chinese).
[38] 向猛, 黄益宗, 蔡立群,等. 水稻吸收积累硅和锑的相互影响水培试验研究[J]. 农业环境科学学报, 2014, 33(11):2090-2097. XIANG M, HUANG Y Z, CAI L Q, et al.Interactive effects of antimony and silicon on their uptake and accumulation by rice seedling in solution culture[J].Journal of Agro-Environment Science, 2014, 1(11):2090-2097(in Chinese).
[39] CHANG A, PAN G, PAGE AL, et al. Developing human health-related chemicalguidelines for reclaimed water and sewage sludge applications in agriculture[R].World Health Organization:Division of Environmental Health,2002:77-78. [40] USEPA. CASRN 7440-36-0Antimony[S]. Integrated risk information system,1991. [41] WHO.Guidelinesfor drinking-water quality, third edition,incorporating first and second addenda[M].Geneva:World Health Organization; 2008.a -

计量
- 文章访问数: 1599
- HTML全文浏览数: 1381
- PDF下载数: 493
- 施引文献: 0